Beginning Google Maps
Applications with
PHP and Ajax

From Novice to Professional

Michael Purvis
Jeffrey Sambells
and Cameron Turner

Apress-

Beginning Google Maps Applications with PHP and Ajax: From Novice to Professional
Copyright © 2006 by Michael Purvis, Jeffrey Sambells, and Cameron Turner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-707-1
ISBN-10 (pbk): 1-59059-707-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Technical Reviewer: Terrill Dent

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Elizabeth Seymour

Copy Edit Manager: Nicole LeClerc

Copy Editor: Marilyn Smith

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Kinetic Publishing Services, LLC

Proofreader: Liz Welch

Indexer: Beth Palmer

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-madrders-ny@springer-sbm.com or
visit http://www.springeronline.com

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-maihfo@apress.com or visit http://www.apress.com .

The information in this book is distributed on an Qas isO basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section
or at the official book site, http://googlemapsbook.com .

To Anne and Jim, that with GodOs grace,
I might one day be so loving a parent.
NMichael Purvis

Dedicated to my loving wife, Stephanie, always by my side as my navigator in life.
May we never lose our way in this crazy world.
And also to my parents, Frank and Linda,
who taught me to always look beyond the horizon.
NJeffrey Sambells

| dedicate this book to my amazing wife, Tanya, and our son, Owen.
Tanya is the ultimate teammate and life partnerN
always willing to dive into an adventure or opportunity regardless of the size.
1Gd also like to thank my parents, Barry and Lorna, for supporting me
in all my ambitions and encouraging me to take risks and pursue dreams.
Without all of you, | would never have agreed to write my first book
about a moving-target topic such as Google Maps,
on a compressed timeline, with a newborn baby!
To everyone else who helped out in the last few months, thank you.
We couldnOt have completed this book without your help and patience.
NCameron Turner

Contents at a Glance

FOoreword. XV
Aboutthe Authars. XiX. ...
About the Technical ReVIEWEL. XXi
Acknowledgments Xiil. X

PART 1 Your First Google Maps

CHAPTER 1 Introducing Google Maps.................oiiiiiiiiiin. 3
CHAPTER 2 Getting Started e 13
CHAPTER 3 Interacting with the User and the Server................... 31
CHAPTER 4 Geocoding AddresSSes.t 63
PART 2 Beyond the Basics

CHAPTER 5 Manipulating Third-Party Data. 97
CHAPTER 6 Improving the User Interface 119
CHAPTER 7 Optimizing and Scaling for Large Data.Sets.............. 145
CHAPTER 8 WhatOs Next for the Google Maps API2.................. 199

PART 3 Advanced Map Features
and Methods

CHAPTER 9 Advanced Tipsand Tricks. ..., 209
CHAPTER 1Qines, Lengths,and Areas.....................ccoiiiinn... 261
CHAPTER 1JAdvanced Geocoding TOPICS. 285
PART 4 Appendixes

APPENDIX AFinding the Data YouWant 315
APPENDIX BGoogle Maps API. 323
IND E X . . 351

Contents

FOoreword. XV
Aboutthe Authars. XiX. ...
About the Technical ReVIEWEL. XXi
Acknowledgments Xiil. X

PART 1 Your First Google Maps

CHAPTER 1 Introducing Google Maps................................. 3
KML:Your FirstMapo e 3
Wayfaring: Your Second.Map................ 5

Adding the First Point. i 6
Adding the Flight Route. 7
Adding the Destination Point. 8
AddingaDrivingRoute 9
WhatOs Next? 10

CHAPTER 2 Getting Started i, 13

The First Map. 13
Keying Up. ... 13
Examining the SampleMap. 15
Specifyinga New Location. 16
Separating Code from Content 18
CleaninQ Up. 20

Basic Interaction. 21
Using Map Control Widgets.ii... 21
Creating Markers i 21
Opening InfoWindaws. i, 23

AListof POINtS. 26
Using Arraysand Objects., 26
terating. 28

SUMMAIY . o 29

viii CONTENTS

CHAPTER 3 Interacting with the User and the Server.............. 31
GoingonaTreasure Hunto, 32
Creating the Map and Marking Points 33

Startingthe Map............ .. 33
ListeningtoUser Events.o, 35
Asking for More Information with an Info Window. 37
Creating an Info WindowontheMap.................... 38
Embedding a Form into the InffoWindow. 39
Avoiding an Ambiguous State. L 44
Controlling the Info Window Size......................... 46
Using GoogleOs Ajax Qbject., 48
Saving Data with GXmIHttp. 49
Parsing the XML Document Using DOM Methaods 54
Retrieving Markers fromthe Server. 57
Adding Some Flair. 59
SUMMANY . .o 62

CHAPTER 4 Geocoding Addresses. ..., 63
Creating an XML File with the Address.Data. 63
Using Geocoding Web Services 65

Requirements for Consuming Geocoding Services. 66

The Google Maps APl Geocoder......................... 67

The Yahoo Geocoding.API........ 75

GEOCOAEIUSttt 80

GEOCOUBI.CA . . . oottt 83

Services for Geocoding Addresses Outside GoogleOs Casverage
Caching LOOKUPSo 86
Building a Store LocationMap.c . 90
SUMMANY . .o 93

PART 2 Beyond the Basics

CHAPTER 5 Manipulating Third-Party Data.......................... 97
Using Downloadable Text Files. 97
Downloading the Database.............................. 98
ParsingCSVData ..., 101
Optimizing the Impart. 102

Using Your New Database Schema..................... 106

CONTENTS ix

SCreen SCraping. . ..ottt 113
A Scraping Example......... 114
Screen Scraping Considerations. 117

SUMMANY . o e e e e 118

CHAPTER 6 Improving the User Interface........................... 119

CSS:ATouchof Style s 119
MaximizingYourMap............o, 120
Adding Hovering Toolbars. 121
Creating Collapsible Side Panels 124

Scripted Style. 126
Switching Upthe Body Classes. 126
Resizing with the Power of JavaScript. 129
Populatingthe Side Panel. 131
Getting Side Panel Feedback. 134

Warning, Now Loading. i 136

Data PointFiltering 139
Showingand Hiding Paints 140
Discovering Groupings.ot 140
Creating Filter Buttons. 141

SUMMANY . o e e 143

CHAPTER 7 Optimizing and Scaling for Large Data Sets......... 145

Understanding the Limitations............................ ... 145

Streamlining Server-Client Communications. 146

Optimizing Server-Side Processing. 148
Server-Side Boundary Method., 149
Server-Side Common Point Method 155
Server-Side Clustering. 161
Custom Detail Overlay Method 167
CustomTile Method. i 176

Optimizing the Client-Side User Experience................. 186
Client-Side Boundary Method. 187
Client-Side Closest to a Common Point.Methad 188
Client-Side Clustering. 191
Further Optimizations. 196

SUMIMAY . .o e 198

CONTENTS

CHAPTER 8 WhatOs Next for the Google Maps.API?............. 199

Driving DIrections. 199
Integrated Google Services. i 200
KML Data. . ..o 202
More Data Layerst 202
Beyondthe Enterprise. 204
Interface Improvements. 204
SUMMAIY . oo 205

PART 3 Advanced Map Features
and Methods

CHAPTER 9 Advanced Tipsand Tricks.............................. 209
Debugging Maps. 209
Interacting with the Map fromthe ARL 210

Helping You Find Your Place. 211
Force Triggering Events with GEvent................... 212
Creating YourOwnEvents. 214
Creating Map Objects with GOverlay........................ 214
Choosing the Pane forthe Overlay. 214
Creating a Quick Tool TipOverlay. 216
Creating Custom Controls.c i 220
Creating the Control Object. 222
Creatingthe Container............... 222
Positioning the Container.................... 222
Usingthe Control.......... 223
Adding Tabs to InffoWindows. 223
Creating a Tabbed InfoWindow. 224
Gathering Info Window Information and Changing Tabs 226
Creating a Custom InfoWindow 226
Creating the Overlay Object and Containers............ 232
Drawing a LittleInfowWindow. 232
Implementing Your Own Map Type, Tiles, and Praojectian 237
GMapType: Gluing It Together 237
GProjection: Locating Where Things Are................ 238
GTileLayer:Viewinglmages 244
The Blue Marble Map: Putting It All Tagether. 247

SUMIMAY . .ot 258

CONTENTS Xi

CHAPTER 1Q.ines, Lengths,and Areas.............................. 261
Starting Flat 261
Lengthsand Angles. i 262
ArCaS . . 263
Moving to Spheres. 266
The GreatCircle i 266
Great-CircleLengths. i i i 268
Area on a Spherical Surface. 269
Working with Polylines. L 274
Building the PolylinesDemo............................ 274
Expanding the PolylinesDema 280
What About UTM Coordinates?. 281
Running Afoul of the Date.Line................ 283
SUMMAIY . oo 284
CHAPTER 1JAdvanced Geocoding TOPICS.ocoviinn... 285
Where Does the Data Come From? 285
Sample Data from Government Sources. 286
Sourcesof RawGISData 289
Geocoding Based on Postal Codes. 290
Grabbing the TIGER/Line by the Tail. 294
Understanding and Definingthe.Data. 295
Parsing and ImportingtheData......................... 299
Building a Geocoding Service. 305
SUMIMIAY . oo e e 311
PART 4 Appendixes
APPENDIX AFinding the Data YouWant............................. 315
Knowing What to Look For: Search Tips..................... 315
Finding the Information 315
Specifying SearchTerms 316
Watching for Errors. 316
The Cat Came Back: Revisiting the TIGER/Line............. 316
More On AIrPOIES. 318
The Government Standard: The Geonames.Data. 319

Shake, Rattle, and Roll: The NOAA Goldmine 319

Xii CONTENTS

For the Space AficionadoinYou. 321
Crater Impacts. 321
UFO/UAP Sightings. 322

APPENDIX BGoogle Maps APL ... 323

class GMap2.o 323
GMap2 Constructor. 323
GMap2Methads........... ... 324

class GMapOPtioNS.ot 328
GMapOptions Properties. ... 328

enum GMapPane. 328
GMapPane Constantso i, 329

class GKeyboardHandler................ 329
GKeyboardHandler Bindings. 329
GKeyboardHandler Constructar. 329

interface GOverlay. 329
GOverlay Constructar. i 330
GOverlay StaticMethod 330
GOverlay Abstract Methods. 330

class GInfoWindow i 330
GInfoWindow Methods. L. 330
Ginfowindow Event. 331

class GInfowindowTah L. 331
GInfowWindowTab Constructar. 331

class GInfowindowOptians 331
GInfoWindowOptions Properties. 331

class GMarker. 331
GMarker CoNnStructar.t 332
GMarker Methods. i 332
GMarker Events 332

class GMarkerOptians. it 333
GMarkerOptions Properties., 333

class GPolyline 333
GPolyline Constructar. i 333
GPolyline Methods. i 333
GPolyline Event. 334

class Glcan. 334
Glcon Constructor 334
Glecon Constant. 334

Glcon Properties. 334

CONTENTS i

Class GPOINt 335
GPoint Constructar. 335
GPoint Properties. 335
GPointMethods. 335

Class GSize.o 335
GSize CONSrUCIOL o 336
GSize Properties. 336
GSize Methods 336

class GBounds. 336
GBounds Constructor. 336
GBounds Properties 336
GBounds Methods. 336

class GLatlng i 337
GLatLng Constructar.o 337
GLatLng Methods.o i 337
GLatLng Properties. i 338

class GLatLngBounds 338
GLatLngBounds Constructar. 338
GLatLngBounds Methods. 338

interface GControl 339
GControl Constructor 339
GControl Methods 339

class GContral. 339
GControl Constructors. ... 339

class GControlPosition. i i 339
GControlPosition Constructor. 340

enum GControlAnchor. 340
GControlAnchorConstants 340

Class GMapTYPe. 340
GMapType Constructor. 340
GMapType Methods 340
GMapType Constants. i 341
GMapType Event. 341

class GMapTypeOptions.t 341
GMapTypeOptions Properties., 342

interface GTileLayer.c i, 342
GTileLayer Constructor. 342
GTileLayer Methods i 342

GTileLayer Event........ ... i 343

Xiv

CONTENTS

class GCopyrightCollectian. 343
GCopyrightCollection Constructor. 343
GCopyrightCollection Methods. 343
GCopyrightCollection Event 343

class GCopyright 343
GCopyright Constructor. 343
GCopyright Properties i 344

interface GProjection i 344
GProjection Methods. 344

class GMercatorProjection. i .. 344
GMercatorProjection Constructor. 344
GMercatorProjection Methads 345

namespace GEvent. 345
GEvent Static Methods 345
GEventEvent..... 346

class GEventListener......... 346

namespace GXmIHLtp 346
GXmlHttp Static Methad 346

namespace GXml 346
GXml StaticMethods L. 347

class GXSIt 347
GXsltStaticMethods. 347

namespace GLOQ.t 347
GLog Static Methods. 347

enum GGeoStatusCode 347
GGeoStatusCode Constants., 348

class GClientGeocoder. ...t 348
GClientGeocoder Constructar.oou.... 348
GClientGeocoder Methods., 348

class GGeocodeCache.......... i, 348
GGeocodeCache Constructar.coon.... 349
GGeocodeCache Methods. 349

class GFactualGeocodeCache. 349
GFactualGeocodeCache Constructor. 349
GFactualGeocodeCache Methad 349

FUNCLiONS. 349

... 351

Foreword

In the Beginning. ..

In the history of the Internet, 20052006 will be remembered as the year when online mapping
finally came of age. Prior to 2005, MapQuest and other mapping services allowed you to look
up directions, search for locations, and map businesses, but these searches were limited, usu-
ally to the companies the services had partnered with, so you couldnOt search for any location.
On February 8, 2005, Google changed all that. As it does with many of its services, Google qui-
etly released the beta of Google Maps to its Labs incubator (http://labs.google.com) and let
word-of-mouth marketing promote the new service.

By all accounts, Google Maps was an instant hit. It was the first free mapping service to
provide satellite map views of any location on the earth, allowing anyone to look for familiar
places. This started the Ol can see my house from hereO trend, and set the blogosphere abuzz
with links to Google Maps locations around the world.

Like other mapping services, Google Maps offered directions, city and town mapping,
and local business searches. However, what the Google Maps engineers buried within its
code was something that quickly set it apart from the rest. Although unannounced and pos-
sibly unplanned, they provided the means to manipulate the code of Google Maps to plot
your own locations. Moreover, you could combine this base mapping technology with an
external data source to instantly map many location-based points of information. And all of
this could be done on privately owned domains, seemingly independent of Google itself.

At first, mapping OhackersO unlocked this functionality, just as video gamers hack into
games by entering simple cheat codes. They created their own mapping services using Google
Maps and other sources. One of the first these was Housingmaps.copwhich combined the
craigslist.org housing listings with a searchable Google Maps interface. Next came Adrian
HolovatyOschicagocrime.org , which offered a compelling way to view crime data logged by the
Chicago Police Department. These home-brewed mapping applications were dubbed Ohacks,0
since Google had not sanctioned the use of its code in external domains on the Web.

The major change came in June 2005, when Google officially introduced the Google Maps
API, which is the foundation for this book. By releasing this API, Google allowed programmers
the opportunity to build an endless array of applications on top of Google Maps. Hundreds of
API keys were registered immediately after the announcement, and many sites integrating
Google Maps appeared within days. The map mashup was born.

The Birth of the Google Maps Mania Blog

The Google Maps labs beta site had been public for barely a month when | tried it for the first

time. |1 was fascinated. While combing through the blogosphere looking for more information,

| started to see a trend toward Google Maps hacks, how-to sites, Firefox extensions, and web-
sites indexing specific satellite images. | thought that others could benefit from an aggregation
of all of these ideas into one themed blog. Thus, my Google Maps Mania blog was born.

XV

Xvi FOREWORD

Google Maps Mania is more accurately described as a Ometa-site,0 as host Leo Laporte pointed
out when | was a guest on his NPR G4techTV radio show in November 2005.
April 13, 2005, saw these as my first posts:

Title: Google Maps Mania

If youOre like me you were absolutely floored when Google came out with the Google
Maps service. Sure, itOs just another mapping service. Until you realize itOs full potential.
The ability to toggle between regular street/road maps and a satellite view is unreal. IOve
started to see a lot of buzz around the blogging community about Google Maps so 10ve
decided to help you keep up with the Google Maps related sites, blogs and tools that are
cropping up. Stay tuned.

Title: Google Sightseeing

The first Google Maps related site of note is Google Sightseeing. This blog tracks interest-
ing satellite shots as submitted by its visitors, then organizes them by interest area like
buildings, natural landmarks and stadiums. 1tOs a pretty nifty site. Google Sightseeing even
posted my suggestion of TorontoOs Rogers Centre (Skydome) and the CN Tower!

Title: Flickr Memory Maps

HereOs a Flickr group that took off fast. Memory Maps is a Flickr group that contains maps
with captions describing memaories they have of those areas or specific notes about differ-
ent areas. Kind of cool.

Title: Make your own multimedia Google map

Google Blogoscoped tipped me off on this link. Seems Engadget has a page which gives
some pretty good directions on how to create your own annotated multimedia Google
map. There is some pretty serious direction here which includes inserting pictures and
movies from the annotations. 10d like to see an example of this.

Title: My GMaps

myGmaps enables you to create, save and host custom data files and display them with
Google Maps. Create push-pin spots on any map of your choice. Mark your house, where
an event will be held, or the route of a fun-run as a few examples. Then you can publish
the map that youOve created to your own website.

These postings represented an interesting cross-section of the ideas, concepts, and web-
sites that | had come across in the two short months since Google Maps came to the Web. In
the year between the start of Google Maps Mania and the release of the second-generation API
(which this book is based on) in April 2006, | have made over 900 posts and attracted more than
6,000 daily readers to the blog, including the architects of the API itself. IOve been Slashdotted,
Dug (at Digg), and linked to from the New York Timessite, as well as the sites of hundreds of
other mainstream papers and magazines. In June 2006, Google arranged for my entire family to
travel across the country so | could speak at the Google Geo Developer Day in advance of the
Where 2.0 conference.

FOREWORD

So many interesting mashups have been created using the Google Maps API that itOs
becoming impossible to keep up with all of them. I liken this to the early days of the Web when
search directories began to manually catalog new web pages as they came online. The volume
of new sites quickly became too huge to handle manually, and Google itself was born.

You can see why the Google Maps API offers the key for the next killer apps on the Web. It
has been the missing link to take the Web to the next level.

This book will provide you the means to take part in this evolution of the Web. | hope to be
posting about the interesting and unique map creations that you build after reading this book.
Your creations will inspire others to do similar things, and together, we will continue to grow
the Internet, one mapping application at a time. Let me know if you build something cool!

Mike Pegg
Google Maps Mania (http://www.gmapsmania.com)

XVii

About the Authors

MICHAEL PURY4 & Mechatronics Engineering student at the
University of Waterloo, in Ontario. He is a mostly self-taught pro-
grammer. Prior to discovering PHP, he was busy making a LEGO"
Mindstorms kit play Connect 4. Currently, he maintains an active
community site for classmates, built mostly from home-brewed
extensions to PunBB and MediaWiki.

He has written about CSS for Position Is Everything, and occa-
sionally participates in the css-discuss mailing list. He particularly
enjoys those clever layouts that mix negative margins, relative posi-
tioning, and bizarre float tricks to create fiendish, cross-browser,
flexible-width concoctions. These and other nontechnical topics
are discussed on his weblog at uwmike.com.

Offline, he enjoys cooking, cycling, and social dancing. He has worked with We-Create, Inc.
on a number of PHP-based projects, and has a strong interest in independent web standards.

JEFFREY SAMBEIsL&graphic designer and self-taught web appli-
cations developer best known for his unique ability to merge the
visual world of graphics with the mental realm of code. With a
Bachelor of Technology degree in Graphic Communications Man-
agement along with a minor in Multimedia, Jeffrey was originally
trained for the traditional paper-and-ink printing industry, but he
soon realized the world of pixels and code was where his ideas
would prosper. In late 1999, he cofounded We-Create, Inc., an Inter-
net software company based in Waterloo, Ontario, which began
many long nights of challenging and creative innovation. Currently,
as Director of Research and Development for We-Create, Jeffrey is
responsible for investigating new and emerging Internet technologies and integrating them using
web standards-compliant methods. In late 2005, he also became a Zend Certified Engineer.

When not playing at the office, Jeffrey enjoys a variety of hobbies from photography to
woodworking. When the opportunity arises, he also enjoys floating in a canoe on the lakes of
Algonquin Provincial Park or going on an adventurous, map-free, drive with his wife. Jeffrey
also maintains a personal website at JeffreySambells.com, where he shares thoughts, ideas,
and opinions about web technologies, photography, design, and more. He lives in Ontario,
Canada, eh, with his wife, Stephanie, and their little dog, Milo.

XiX

XX

ABOUT THE AUTHORS

CAMERON TURKE&been programming computers since his first
VIC 20 at age 7. He has been developing interactive websites since
1994. In 1999, he cofounded We-Create, Inc., which specializes in
Internet software development. He is now the companyQOs Chief
Technology Officer. Cam obtained his Honors degree in Computer
Science from the University of Waterloo with specialization in
applied cryptography, database design, and computer security.

Cam lives in CanadaOs technology capital of Waterloo, Ontario,
with his wife, Tanya, son Owen, and dog Katie. His hobbies include
biking, hiking, water skiing, and painting. He maintains a personal
blog at CamTurner.com, discussing nontechnical topics, thoughts,
theories, and family life.

About the Technical Reviewer

TERRILL DEMNTenrolled in Honors Mathematics at the University of
Waterloo. His major interests center around Internet culture, twentieth
century history, and economic theory. Terrill.ca is home to his weblog,
and MapLet.ca is the front for his web application ventures, where he
lets his acute attention to detail show through. Apart from work, he busies
himself with fine arts, cycling, and an occasional novel.

XXi

Acknowledgments

-Ize authors would like to thank Mike Pegg of Google Maps Mania for giving Apress our names
when contacted about doing a book on Google Maps. This book would not have been possible
without his encouragement, support, generosity, and friendship.

Thanks to Terrill for finding the errors of our bleary-eyed coding sessions and helping make
this book what it is today.

Thanks to Jason, Elizabeth, Marilyn, Katie, Julie, and the rest of the team at Apress. We hope
that working with us has been as much fun for you as working with you was for us.

XXiii

PART 1

Your First
Google Maps

CHAPTER 1

Introducing Google Maps

It()s hard to argue that Google Maps hasnOt had a fundamental effect on the mapping world.
While everyone else was still doing grainy static images, Google developers quietly developed
the slickest interface since Gmail. Then they took terabytes of satellite imagery and road data,
and just gave it all away for free.

weOre big fans of Google Maps and excited to get started here. WeQve learned a lot about
the Google Maps API since it was launched, and even more during the time spent writing and
researching for this book. Over the course of the coming chapters, youOre going to move from
simple tasks involving markers and geocoding to more advanced topics, such as how to acquire
data, present many data points, and provide a useful and attractive user interface.

A lot of important web technologies and patterns have emerged in parallel with the Google
Maps API. But whether you call it Ajax or Web 2.0 is less important than what it means: that
the little guy is back.

You don®t need an expensive development kit to use the Google Maps API. You don0t need
a computer science degree, or even a lot of experience. You just need a feel for whatOs important
data and an idea of what you can do to present it in a visually persuasive way.

We know youOre eager to get started on a map project, but before we actually bust out the
JavaScript, we wanted to show you two simple ways of creating ultra-quickie maps: using KML
files and through the Wayfaring map site.

Using either of these approaches severely limits your ability to create a truly interactive
experience, but no other method will give you results as quickly.

KML: Your First Map

The map welre working on here is actually Google Maps itself. In June 2006, Google announced
that the official maps site would support the plotting of KML files. You can now simply plug

a URL into the search box, and Google Maps will show whatever locations are contained in the
file specified by the URL. We aren0t going to go in depth on this, but weOve made a quick exam-
ple to show you how powerful the KML method is, even if it is simple.

Note KML stands for Keyhole Markup Language, which is a nod to both its XML structure and Google
EarthOs heritage as an application called Keyhole. Keyhole was acquired by Google late in 2004.

CHAPTER 1 INTRODUCING GOOGLE MAPS

We created a file called toronto.kml and placed the contents of Listing 1-1 in it. The paragraph
blurbs were borrowed from Wikipedia, and the coordinates were discovered by manually find-
ing the locations on Google Maps.

Listing 1-1. A Sample KML File

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlIns="http://www.google.com/earth/kml/2">
<Document>
<name>toronto.kml</name>
<Placemark>
<name>CN Tower</name>
<description>The CN Tower (Canada's National Tower, Canadian National Tower),
at 553.33 metres (1,815 ft., 5 inches) is the tallest freestanding structure on land.
It is located in the city of Toronto, Ontario, Canada, and is considered the
signature icon of the city. The CN Tower attracts close to two million visitors
annually.

http://en.wikipedia.org/wiki/CN_Tower</description>
<Point>
<coordinates>-79.386864,43.642426</coordinates>
</Point>
</Placemark>
</Document>
</kml>

In the actual file (located at http://googlemapsbook.com/chapterl/kml/toronto.kml),
we included two more Placemarkelements, which point to other well-known buildings in
Toronto. To view this on Google Maps, paste that URL into the Google Maps search field. Alter-
natively, you can just visit this link:

http://maps.google.com/maps?f=q&hl=en&q=http://googlemapsbook.com/chapterl/kml/
toronto.kmi

You can see the results of this in Figure 1-1.

CHAPTER 1 INTRODUCING GOOGLE MAPS5

Help
Web Images Groups MNews Froogle Maps more »

GOL)SIe lhttp:_.',h.mv.googlemapsbook.com,!chapterljkmlhoromo.kml Search Search the map

Find businesses
a.q., Thot

near lax” or "10 market st; san franciecs

htip:/fen wikipedia.org/wiki/CN_Tower

Maps Print [Email @ Link io this page
Digplaying content from www.gocglemapsbook.com - i) chnats — —
el S el B et C‘B"E“d'i‘n';“‘ Map || Satelite || Hybrid ZT‘
A VLW BheTAmm-CeniE | — A b E
- i = by.al ot ! ot — \ \ Lo
and rit. [Fak: 1
CN Tower =
CN Tower “| The CN Tower (Canada's Mational Tower, Canadian
| Matlonal Tower), at 553.33 metres (1,815 11., 5 Inches) a7 2
| is the tallest freestanding structure on land. It is E
@ Rogers Centre located in the city of Toronto, Ontario, Canada, and is | \,‘-';.'M
caonsidered the signature icon of the city. The CN =i
? Air Canada Centre Tower aftracts close to two million visitors annually.

Figure 1-1.A custom KML data file being displayed at maps.google.com

Now, is that a quick result or what? Indeed, if all you need to do is show a bunch of locations,
itOs possible that a KML file will serve your purpose. If youQre trying to link to your favorite fish-
ing spots, you could make up a KML file, host it somewhere for free, and be finished.

But that wouldnGt be any fun, would it? After all, as cool as the KML mapping is, it doesn0t
actually offer any interactivity to the user. In fact, most of the examples youOll work through in
Chapter 2 are just replicating the functionality that Google provides here out of the box. But
once you get to Chapter 3, youOll start to see things that you can doonly when you harness the
full power of the Google Maps API.

Before moving on, though, weQll take a look at one other way of getting a map online
quickly.

Wayfaring: Your Second Map

A number of services out there let you publish free maps of quick, plotted-by-hand data. One
of these, which weOll demonstrate here, is Wayfaring.com (Figure 1-2). Wayfaring has received
attention and praise for its classy design, community features (such as commenting and shared
locations), and the fact that itOs built using the popular Ruby on Rails framework.

6

CHAPTER 1 INTRODUCING GOOGLE MAPS

Login
e
wayfanng woiow you, foliow me B

Explore | Create Map | My YWayfaning Help

Maps, your way.

r;un .I':'alrk—.{
+ Explore maps created by others
4 Connect and collaborate

Explore Maps Now |

Explore ~ Connect

Firid mzap
b maps

Figure 1-2.Wayfaring.com home page

Wayfaring is a mapping service that uses the Google Maps API and allows users to quickly
create maps of anything they would like. For example, some people have made maps of their
vacations; others have identified interesting aspects of their hometown or city. As an example,
weOll walk you through making a quick map of an imaginary trip to the Googleplex, in Moun-
tain View, California.

Point your browser at http://www.wayfaring.com and follow the links to sign up for an
account. Once youOve created and activated your account, you can begin building your map.
Click the Create link.

Adding the First Point

WeQll start by adding the home airport for our imaginary journey. In our case, that would be
Pearson International Airport in Toronto, Ontario, Canada, but you could use the one closest
to you. Since Pearson is an international location (outside the United States), we need to drag
and zoom the map view until we find it. If youQre in the United States, you could use instead
the nifty Jump To feature to search by text string. Figure 1-3 shows Pearson nicely centered
and zoomed.

CHAPTER 1 INTRODUCING GOOGLE MAPS7

User: camturner | Sign Out | Settings

waﬁan“g Blog | Forums

Edit Map Explore | Create Map | My Wayfanng Help

A o \ NS | Map Editor

.E‘ . o ; b] it el ! ! Name Composa Tag Describe Settings

. _
0, y 4 . ISR - % Add aWaypoint

AWaypoint can be re n other maps

Add a Note

AMote ints map

Add a Route

Tip: click on a marker to editit

CETR RN Vil P8 ~dvanced Options

@ Greasemonkey

;wéw..._ > 7 N
Gorgle o
Latitude, Longitude

Figure 1-3.Lester B. Pearson International Airport, Toronto, Ontario

Once youOve found your airport, you can click Next and name the map. After clicking
ahead, you should be back at the main Map Editor screen.

Select Add a Waypoint from the list of options on the right. YouOll be prompted to name
the waypoint. WeQll call ours OLester B Pearson International Airport.O However, as we type, we
find that Wayfaring is suggesting this exact nam e. This means that someone else on some other
map has already used this waypoint, and the system is giving us a choice of using their point
or making one of our own. 1t0s a safe bet that most of the airports you could fly from are already
in Wayfaring, so feel free to use the suggested one if you would like. For the sake of complete-
ness, weOll quickly make our own. Click Next to continue.

The next two screens ask you to tag and describe this point in order to make your map
more searchable for other members. WeOll add the tags Oairport Toronto Ontario CanadaO and
give it a simple description. Finally, click Done to commit the point to the map, which returns
you to the Map Editor screen.

Adding the Flight Route

The next element weOre going to add to our map is a route. A route is a line made up of as
many points as you would like. WeOll use two routes in this example. The first will be a straight
line between the two airports to get a rough idea of the distance the plane will have to travel to
get us to GoogleOs headquarters. The second will be used to plot the driving path we intend to
take between the San Francisco airport and the Googleplex.

To begin, click Add a Route, name the route (something like Qairplane tripO), and then
click your airport. A small, white dot appears on the place you clicked. This is the first point on
your line. Now zoom out, scroll over to California, and zoom in on San Francisco. The airport

CHAPTER 1 INTRODUCING GOOGLE MAPS

weOll be landing at is on the west side of the bay. Click the airport here, too. As you can see in
Figure 1-4, a second white dot appears on the airport and a blue line connects the two points.
You can see how far your flight was on the right side of the screen, underneath the route label.
Wow, our flight seems to have been over 2000 miles! If you made a mistake and accidentally
clicked a few extra times in the process of getting to San Francisco, you can use the Undo Last
option. Otherwise, click Save.

User: camturner | Sign Out | Settings

wayfan“g Blog | Forums

Edit Map Explore | Create Map | My Wayfanng Help
Route Editor

Edit

Add a route

Route Label {required)

Airplane Ride

Length: 2376.56 miles

Figure 1-4.0ur flight landing at San Francisco International Airport

Adding the Destination Point

Now that youOre in San Francisco, letOs figure out how to get to the Gogleplex directly. Click
Add a Waypoint. Our destination is Google, so weQve called the new point OThe GoogleplexO
and used the address box feature to jump directly to 1600 Amphitheatre Pky, Mountain View,
CA 94043. Wayfaring is able to determine latitude and longitude from an address via a process
called geocoding, which youOll be seeing a lot more of in Chapter 4.

To confirm youOre in the right place, click the Sat button on the top-right corner of the
map to switch it over to satellite mode. You should see something close to Figure 1-5.

CHAPTER 1 INTRODUCING GOOGLE MAPS9

User: camturner | Sign Out | Settings
wayfanng Biog | Forums

Edit Map Explore | Create Map | My Wayfanng Help

Map Editor
Hame Composa Tag Describe Selings

f oo
!

) | Add a Note
i AND I¥ In tis map
2 i i Add a Route

=

Add a Waypoi

it can be

K

Tip: click on a marker to edit it

Advanced Options

=
'\@} Greasemonkey

T i i e Prireorlee
Latituds, Longitude

Figure 1-5.The Googleplex

Excellent! Save that waypoint.

Adding a Driving Route

Next, letOs figure out how far of a drive we have ahead of us. Routes don(t really have a starting
and ending point in Wayfaring from a visual point of view, so we can start our route from the
Googleplex and work our way backwards. Switch back into map (or hybrid) mode so you can
see the roads more clearly. From the Map Editor screen, select Add a Route and click the point
you just added. Use 10 to 20 dots to carefully trace the trip from Mountain View back up the
Bayshore Freeway (US Highway 101) to the airport. By our tracing, we end up with about 23
miles of fun driving on this California highway, as shown in Figure 1-6.

10

CHAPTER 1 INTRODUCING GOOGLE MAPS

User: camturner | Sign Out | Settings

wmnng Biog | Fonums

Edit u1‘3p Explore | Create Map | My Wayfaning Help

Map Editor

Hame Compose Tag Describe Setlings
Add a Note
A Mote wil inthis map

4| AddaRoute
E3)

Tip: click on a marker to edit it

e
Bay 2
| Advanced Options

| Bureign Murray
Ranch'Si Fari
; i) Greasemonkey
(AT
ﬁlﬂﬁ' = jlrne, QAR =) Neigosta £A005 Tels Aias - Thimit kiies | e

Latitude. Longitude

Figure 1-6.The drive down the Bayshore Freeway to the Googleplex

ThatOs it. You can use the same principles to make an annotated map of your vacation or
calculate how far youOre going to travel, and best of all, itOs a snap to share it. To see our map
live, visit http://www.wayfaring.com/maps/show/17131 .

Of course, since this is a programming book, youCQre probably eager to dig into the code
and make something really unique. Wayfaring may be nice, but the whole point of a mashup is
to automate the process of getting a lot of data combined together.

Tip Mashujis a term that originates from DJs and other musicians who create new compositions by
OmashingO together samples from existing songs. A classic exandjle Girehigdirmvhich joins
the a capella versions of tracks from Jay& Bkack Albumith unauthorized clips frohe White
Albumby The Beatles. In the context of thighasfypefers to the mashing of data from one source
with maps from Google.

WhatOs Next?

Now that these examples are out of the way, we hope youOre eager to learn how to build your
own mashups from the ground up. By the end of Part 1 of this book, youll have the skills to do
everything youOve just done on Wayfaring (except the route lines and distances, which are cov-
ered in Chapter 10) using JavaScript and XHTML. By the book®s conclusion, youOll haveearned
most of the concepts needed to build your own Wayfaring clone!

CHAPTER 1 INTRODUCING GOOGLE MAPSa1

So what exactly is to come? WeOve divided the book into three parts and two appendixes.
Part 1 goes through Chapter 4 and deals with the basics that a hobbyist would need to get started.
YouOll make a map, add some custom pins, and geocode a set of data using freely available
services. Part 2 (Chapters 5 through 8) gets into more map development topics, like building
a usable interface, dealing with extremely large groups of points, and finding sources of raw
information you may need to make your professional map ideas a reality. Part 3 (Chapters 9
through 11) dives into advanced topics: building custom map overlays such as your own info
window and tooltip, creating your own map tiles and projections, using the spherical equations
necessary to calculate surface areas on the earth, and building your own geocoder from scratch.
Finally, one appendix provides a reference guide to the Google Maps version 2 API, and another
points to a few places where you can find neat data for extending the examples here, and to
inspire your own projects.

We hope you enjoy!

CHAPTER 2

Getting Started

In this chapter, youOll learn how to create your first Google map project, plot some markers,
and add a hit of interactivity. Because JavaScript plays such a central role in controlling the
maps, youOll also start to pick up a few essentials about that language along the way.

In this chapter, youOll see how to do the following:

¥ Get off the ground with a basic map and a Google Maps API key.
¥ Separate the map application®s JavaScript functions, data, and XHTML.
¥ Unload finished maps to help browsers free their memory.

¥ Create map markers and respond to clicks on them with an information pop-up.

The First Map

In this section, youOll obtain a Google Maps API key, and then begin experimenting with it by
retrieving GoogleOs starter map.

Keying Up

Before you start a Google Maps web application, you need sign up for a Google Maps API key.
To obtain your key, you must accept the Google Maps API Terms of Use, which stipulate, among
other things, that you must not steal GoogleOs imagery, obscure the Google logo, or hold Google
responsible for its software. Additionally, youOre prevented from creating maps that invade pri-
vacy or facilitate illegal activities.

Google issues as many keys as you need, but separate domainsnust apply for a separate
key, as each one is valid for only a specific domain and subdirectory within that domain. For
your first key, youOll want to give Google the root directory of your domain or the space in which
youQre working. This will allow you to create your project in any subdirectory within your domain.
Visit http://www.google.com/apis/maps/signup.html (Figure 2-1) and submit the form to get
your key. Throughout this book, nearly all of the examples will require you to include this key
in the JavaScript <script> element for the Google Maps API, as weQre about to demonstrate in
Listing 2-1.

13

14

CHAPTER 2 GETTING STARTED

806 Google Maps API - Sign Up (&)
':,"I' L-%?‘_ i‘ |C] http:/ fvaww. google .com/apis jmaps/signup . html v -_::' [C]v &

@[‘.lisahleY igCuDkies' L:JCSS" (SiForms " & /Images " '@'Information‘ [E]Miscellanzous ¥ ﬁ(}utllne' Eresize” '@l'luols' L:'vimSnur[
B < ks et < = 2 - -

[coogle Maps API Terms of Use

‘Thank you for using the Google Maps APFI! By using the Google Maps AFT
|the "Bervice®), you ("You") accept and agree tc be bound by the
focllowing terms and conditions (the "Terms of Use™).

1. Service.

1.1 Description of Service. The API consists of Javascript that
allows You to display Google map images on your website, subject to
the limitationa and conditionz described below. The API ia limited to
allowing You tc display map images only, and does not provide You with
the abllity to access the underlying map data, any services provided
by Google in ccnnection with its maps service (such as local search orj.

idirections|, or any other Google service. =
v
~
]
[+ 1 have read and agree with the terms and conditions (priniadle version) |
My web site URL: |http:/ / !
|
Cenerate AP| Key | 1
|
|
]
]
|
]
-
Q ‘ . ©2006 Google - Gooole Home - VieTe Hinng - Frivacy Policy - Terms of Service 1
W
&
v
Done P

Figure 2-1.Signing up for an API key. Check the box, and then enter the URL of your webspace.

Note why a key? Google has its reasons, which may or may not include seeing what projects are where
which are the most popular, and which may be violating the terms of service. Google is not the only one th
makes you authenticate to use an API. Del.icio.us, Amazon, and others all provide services with APIs that
require you to first obtain a key.

When you sign up to receive your key, Google will also provide you with a very basic
Ostarter mapO to help familiarize you with the fundamental concepts required to integrate
a map into your website. WeOll begin by dissecting and working with this starter code so you
can gain a basic understanding of whatOs happening.

If you start off using GoogleOs sample, your key is already embedded in the JavaScript.
Alternatively, you canNas with all listingsNgrab the source code from the bookOs website at
http://googlemapsbook.com and insert your own key by hand.

Either way, save the code to afile called index.php . Your key is that long string of characters fol-
lowing key= (Our key, in the case of this bookOs website, i®BQIAAAA3IEjXKLYsh9SEveh MphphQP1y
R2bHJIW2Brl_bW_I0KXsyt8cxTKO5Zz-UK0J61epTIZRXNS)f TRgw

CHAPTER 2 GETTING STARTED

Examining the Sample Map

Once you have the file in Listing 2-1 uploaded to your webspace, check it out in a browser.
And ta-da, a map in action!

Listing 2-1. The Google Maps API Starter Code

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict/EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmins="http://www.w3.0rg/1999/xhtml|">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Google Maps JavaScript AP| Example</title>
<script src="http://maps.google.com/maps~?file=api&v=2&key=ABQIAAAA
33EjxkLYsh9SEveh_MphphQP1yR2bHIJW2Brl_bW_I0KXsyt8cxTKO5Zz-UKoJ6le
pTIZRXN8NfTRgw" type="text/javascript"></script>
<script type="text/javascript">

/I<[CDATA[

function load() {
if (GBrowserlsCompatible()) {
var map = new GMap2(document.getElementByld("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}
mn>

</script>
</head>

<body onload="load()" onunload="GUnload()">
<div id="map" style="width: 500px; height: 300px"></div>
</body>
</html>

In Listing 2-1, the container holding the map is a standard XHTML web page. A lot of the
listing here is just boilerplateNstandard initialization instructions for the browser. However,
there are three important elements to consider.

First, the head of the document contains a critical script element. Its src attribute points
to the location of the API on GoogleOs server, and your key is passed as a parameter:

<script src="http://maps.google.com/maps~?file=api&v=2&key=YOUR_KEY_HERE"
type="text/javascript"></script>

Second, the bodysection of the document contains a div called map

<div id="map" style="width: 500px; height: 300px"></div>

15

16

CHAPTER 2 GETTING STARTED

Although it appears empty, this is the element in which the map will sit. Currently, a style
attribute gives it a fixed size; however, it could just as easily be set it to a dynamic size, such as
width: 50%.

Finally, back in the head thereQs script element containing a short JavaScript, which is
triggered by the document bodyOsonload event. ItOs this code that communicates with GoogleOs
API and actually sets up the map.

function load() {
if (GBrowserlsCompatible()) {
var map = new GMap2(document.getElementByld("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

The first line is an if statement, which checks that the userOs browser is supported by
Google Maps. Following that is a statement that creates a GMap@bject, which is one of several
important objects provided by the API. The GMapabject is told to hook onto the map div, and
then it gets assigned to a variable called map

Note Keen readers will note that weOve already encountered another of GoogleOs special API objects:
GlLatLng GLatLng as you can probably imagine, is a pretty important class, that weOre going to see a lot
more of.

After you have your GMap@bject in a mapvariable, you can use it to call any of the GMap2
methods. The very next line, for example, calls the setCenter() method to center and zoom
the map on Palo Alto, California. Throughout the book, weOll be introducing various methods
of each of the API objects, but if you need a quick reference while developing your web appli-
cations, you can use Appendix B of this book or view the Google Maps API reference (http://
www.google.com/apis/maps/documentation/) directly online.

Specifying a New Location

A map centered on Palo Alto is interesting, but itOs not exactly groundbreaking. As a first attempt
to customize this map, youQre going to specify a new location for it to center on.

For this example, weOve chosen the Golden Gate Bridge in San Francisco, California
(Figure 2-2). 1t0s a large landmark and is visible in the satellite imagery provided on Google
Maps (http://maps.google.com). You can choose any starting point you like, but if you search
for OGolden Gate BridgeO in Google Maps, move the view slightly, and then click Link to This
Page, youOll get a URL in your location bar that looks something like this:

http://maps.google.com/maps?f=q&llI=37.818361,-122.478032&spn=0.029969,0.05579

CHAPTER 2 GETTING STARTED 17

866 golden gate bridge - Google Maps (=
Qv o & 00 Gy [Clvwlmans goooie comy v 0 :
xDisableY ECDDkiEL' E}CSEY EFormsY #Imagas ¥ @h’lfﬂrmaﬁDﬂY [ElMiscallaneous v gfﬂutlinz" [Bresizav @Tnols' r|'_'|\.l'iaw50ur
Help
= l _ Web Images Groups MNews Froogle Maps more »
Go (.)8 e Igolden gata bridgel Search mg;sr:;:
Maps e.g., "rolsls near las” or *10 markel st, san francisco” Gel Direclions
Maps Print [5) Emall == Link to nis page
- : T o]

|

Figure 2-2.The Golden Gate Bridge satellite imagery from Google Maps

Cautionlf you use Google Maps to search for landmarks, the Link to This Page URL wonOt immediatel;
contain the latitude and longitude variable but instead have a parameter containing the search terms. To a
include the latitude and longitude, you need to adjust the zoom level or move the map so that the link is nc
longer to the default search position.

1tOs clear that the URL contains three parameters, separated by ampersands:

f=q
Il =37.818361, -122.478032
spn = 0.029969, 0.05579

The ll parameter is the important one youOll use to center your map. Its value contains
the latitude and longitude of the center of the map in question. For the Golden Gate Bridge,
the coordinates are 37.82N and 122.48W.

18

CHAPTER 2 GETTING STARTED

Note Latitudés the number of degrees north or south of the equator, and ranges from D90 (South Pole)
to 90 (North Polepngitudes the number of degrees east or west of the prime meridian at Greenwich, in
England, and ranges from D180 (westward) to 180 (eastward). There are several different ways you can
record latitude and longitude information. Google uses decimal notation, where a positive or negative num
ber indicates the compass direction. The process of turning a street address into a latitude and longitude i
calledgeocodingnd is covered in more detail in Chapter 4.

You can now take the latitude and longitude values from the URL and use them to recen-
ter your own map to the new location. Fortunately, itOs a simple matter of plugging the values
directly into the GLatLngconstructor.

Separating Code from Content

To further improve the cleanliness and readability of your code, you may want to consider
separating the JavaScript into a different file. Just as Cascading Style Sheets (CSS) should not
be mixed in with HTML, itOs best practice to also keep JavaScript separated.

The advantages of this approach become clear as your project increases in size. With large
and complicated Google Maps web applications, you could end up with hundreds of lines of
JavaScript mixed in with your XHTML. Separating these out not only increases loading speeds,
as the browser can cache the JavaScript independently of the XHTML, but their removal also
helps prevent the messy and unreadable code that results from mixing XHTML with other
programming languages. Your eyes and your text editor will love you if they donOt have to deal
with mixed XHTML and JavaScript at the same time.

In this case, youOll actually take it one step further and also separate the marker data file
from the map functions file. This will allow you to easily convert the static data file to a dynami-
cally generated file in later chapters, without the need to touch any of the processing JavaScript.

To accommodate these changes, weOve separated the web applicationOs JavaScript futions,
data, and XHTML, putting them in separate files called index.php for the XHTML portion of
the page, map_functions.js for the behavioral JavaScript code, and map_data.phgfor the data
to plot on the map. Listing 2-2 shows the revised version of the index.php file.

Listing 2-2. Extrapolated index.php File

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict/EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtml">
<head>

<script src="http://maps.google.com/maps?file=api&v=2&key=
ABQIAAAATAb2RNhzPafOW1mtifapBRI9caN7296ZHDcvjSpGbL7PxwkwBS
ZidcfOwy4q2EZpjEJx3rc4Lt5Kg" type="text/javascript"></script>

<script src="map_data.php" type="text/javascript"></script>

<script src="map_functions.js" type="text/javascript"></script>
</head>

CHAPTER 2 GETTING STARTED

<body>

<div id="map" style="width: 500px; height: 300px"></div>
</body>
</html>

Listing 2-2 is the same basic HTML document as before, except that now there are two
extra script elements inside the head Rather than referencing the external API, these refer-
ence localNon the serverNJavaScript files called map_data.phpand map_functions.js . For
now, youQll leave themap_data.phgfile empty, but it will be used later in the chapter when we
demonstrate how to map an existing list of markers. The important thing to note here is that it
must be referenced first, before the map_functions.js file, so that the data is OavailableO to the
code in the map_functions.js file. Listing 2-3 shows the revised map_functions.js file.

Listing 2-3. Extrapolated map_functions.js File

var centerlLatitude = 37.818361;
var centerLongitude = -122.478032;
var startZoom = 13;

var map;

function init()

{
if (GBrowserlsCompatible()) {
map = new GMap2(document.getElementByld("map"));
var location = new GLatLng(centerLatitude, centerLongitude);
map.setCenter(location, startZoom);
}
}

window.onload = init;

Although the behavior is almost identical, the JavaScript code in Listing 2-3 has two
important changes:

¥ The starting center point for latitude, longitude, and start zoom level of the map are
stored in var variables at the top of the script, so it will be more straightforward to change
the initial center point the next time. You won®t need to hunt down a setCenter() call
thatOs buried somewhere within the code.

¥ The initialization JavaScript has been moved out of the bodyof the XHTML and into the
map_functions.js file. Rather than embedding the JavaScript in the body of the XHTML,
you can attach a function to the window.onload event. Once the page has loaded, this
function will be called and the map will be initialized.

For the rest of the examples in this chapter, the index.php file will remain exactly as it is in
Listing 2-2, and you will need to add code only to the map_functions.js and map_data.phgfiles
to introduce the new features to your map.

19

20

CHAPTER 2 GETTING STARTED

CautionltOs important to see the difference bieitveandinit() . When you add the parentheses
after the function name, it means Oexecute it.O Without the parentheses, it means Ogive me a reference t
When you assign a function to an event handledsaomest.onload you want to be very careful that
you don®t include the parentheses. Otherwise, all youOve assigned to the handler is the functionOs returr
value, probablynall .

Cleaning Up

One more important thing to do with your map is to be sure to correctly unload it. The extremely
dynamic nature of JavaScriptOs variables means that correctly reclaiming memory (called garbage
collection) can be atricky process. As a result, some browsers do it better than others.

Firefox and Safari both seem to struggle with this, but the worst culprit is Internet
Explorer. Even up to version 6, simply closing a web page is hot enough to free all the memory
associated with its JavaScript objects. An extended period of surfing JavaScript-heavy sites such
as Google Maps could slowly consume all system memory until Internet Explorer is manually
closed and restarted.

Fortunately, JavaScript objects can be manually destroyed by setting them equal to null .
The Google Maps API now has a special function that will destroy most of the API0s objects,
which helps keep browsers happy. The function is GUnload(), and to take advantage of it is
a simple matter of hooking it onto the body.onunload event, as in Listing 2-4.

Listing 2-4. Calling GUnload() in map_functions.js

var centerLatitude = 37.818361;
var centerLongitude = -122.478032;
var startZoom = 13;

var map;

function init() {
if (GBrowserlsCompatible()) {
map = new GMap2(document.getElementByld("map"));
var location = new GLatLng(centerLatitude, centerLongitude);
map.setCenter(location, startZoom);

}

window.onload = init;
window.onunload = GUnload;

ThereOs no obvious reward for doing this, but itOs an excellent practice to follow. As your
projects become more and more complex, they will eat up available memory at an increasing
rate. On the day that browsers are perfect, this approach will become a hack of yesterday. But
for now, itOs a quiet way to improve the experience for all your visitors.

CHAPTER 2 GETTING STARTED 21

Basic Interaction

Centering the map is all well and good, but what else can you do to make this map more excit-
ing? You can add some user interaction.

Using Map Control Widgets

The Google Maps API provides five standard controls that you can easily add to any map:
¥ GlLargeMapContraglthe large pan and zoom control, which is used on maps.google.com
¥ GSmallMapContralthe mini pan and zoom control, which is appropriate for smaller maps

¥ GScaleControl, the control that shows the metric and imperial scale of the mapOs current
center

¥ GSmallZoomContrqlthe two-button zoom control used in driving-direction pop-ups

¥ GMapTypeControwhich lets the visitor toggle between Map, Satellite, and Hybrid types

Tip If youOre interested in making your own custom controls, you can do so byGsetding the
class and implementing its various functions. We may discussgbagy@mthgsbook.corblog, so be
sure to check it out.

In all cases, itOs a matter of instantiating the control object, and then adding it to the map with
the GMapabjectOsaddControl() method. For example, hereGs how to add the small map control,
which you can see as part of the next example in Listing 2-5:

map.addControl(new GSmallMapControl());

You use an identical process to add all the controls: simply pass in a new instance of the
controlOs class.

Note What doesistantiatinmean? In object-oriented programming, a class is like a blueprint for a type
of entity that can be created in memory. Whennmaimpéront of a class name, JavaScript takes the
blueprint and actually creates a usable capstdaneof the object. ThereOs onlglatengclass, but
you can instantiate as mabgtLngobjectas you need.

Creating Markers

The Google Maps APl makes an important distinction between creating a marker, or pin, and
adding the marker to a map . In fact, the map object has a general addOverlay() method, used
for both the markers and the white information bubbles.

In order to plot a marker (Figure 2-3), you need the following series of objects:

22 CHAPTER 2 GETTING STARTED

¥ AGLatLngobject stores the latitude and longitude of the location of the marker.
¥ An optional Glconobject stores the image that visually represents the marker on the map.
¥ AGMarkembiject is the marker itself.

¥ AGMapabject has the marker plotted on it, using the addOverlay() method.

Figure 2-3.Marker plotted in the middle of the Golden Gate Bridge map

Does it seem like overkill? 1tOs less scary than it sounds. An updatednap_functions.js is
presented in Listing 2-5, with the new lines marked in bold.

Listing 2-5. Plotting a Marker

var centerLatitude = 37.818361;
var centerLongitude = -122.478032;
var startZoom = 13;

var map;

function init()
{
if (GBrowserlsCompatible()) {
map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());
var location = new GLatLng(centerLatitude, centerLongitude);
map.setCenter(location, startZoom);

CHAPTER 2 GETTING STARTED 23

var marker = new GMarker(location)
map.addOverlay(marker);

}

window.onload = init;
window.onunload = GUnload,;

Cautionif you try to add overlays to a map before setting the center, it will cause the API to give unpre-
dictable results. Be carefskt@enter() yourGMap®bject before adding any overlays to it, even if itOs
just to a hard-coded dummy location that you intend to change again right away.

See what happened? We assigned the newGLatLngobject to a variable, and then we were
able to use it twice: first to center the map, and then a second time to create the marker.

The exciting part isn0t creating one marker; itOs creating many markers. But before we come
to that, we must quickly look at the Google Maps facility for showing information bubbles.

WHITHER THOU, GICON?

You can see that we didnOt actuall@lesmabject anywhere in Listing 2-5. If we had one defined, it
would be possible to make the marker take on a different appearance, like so:

var marker = new GMarker(my_GLatLng my_Glco)

However, when the icon isnOt specified, the APl assumes the red inverted teardrop as a default. There is
a more detailed discussion of how to uSé&tireobject in Chapter 3.

Opening Info Windows

ItOs time to make your map respond to the user! For instance, clicking a marker could reveal
additional information about its location (Figure 2-4). The API provides an excellent method
for achieving this result: the info window. To know when to open the info window, however,
youOll need to listen for a click event on the marker you plotted.

CHAPTER 2 GETTING STARTED

Figure 2-4.An info window open over the Golden Gate Bridge

Detecting Marker Clicks

JavaScript is primarily an event-driven language. The init() function that youOve been using
since Listing 2-3 is hooked onto the window.onload event. Although the browser provides many
events such as these, the API gives you a convenient way of hooking up code to various events
related to user interaction with the map.

For example, if you had a GMarkerobject on the map called marker, you could detect marker
clicks like so:

function handleMarkerClick() {
alert("You clicked the marker!");

}

GEvent.addListener(marker, 'click’, handleMarkerClick);

1tOs workable, but it will be a major problem once you have a lot of markers. Fortunately,
the dynamic nature of JavaScript yields a terrific shortcut here. You can actually just pass the
function itself directly to addListener() as a parameter:

GEvent.addListener(marker, "click’,
function() {
alert("You clicked the marker!");
}
)i

Opening the Info Window

Chapter 3 will discuss the info window in more detail. The method weOll demonstrate here is
openinfoWindowHtml(). Although you can open info windows over arbitrary locations on the

CHAPTER 2 GETTING STARTED

map, here youOll open them above markers only, so the code can take advantage of a shortcut
method built into the GMarkerbject:

marker.openinfoWindowHtml(description);

Of course, the whole point is to open the info window only when the marker is clicked, so
youOll need to combine this code with the addListener() function:

GEvent.addListener(marker, 'click’,
function() {
marker.openinfoWindowHtml(description);

}

Finally, youOll wrap up all the code for generating a pin, an event, and an info window into
a single function, called addMarker(), in Listing 2-6.

Listing 2-6. Creating a Marker with an Info Window

var centerlLatitude = 37.818361;
var centerLongitude = -122.478032;
var description = '‘Golden Gate Bridge';

var startZoom = 13;
var map;

function addMarker(latitude, longitude, description) {
var marker = new GMarker(new GLatLng(latitude, longitude));

GEvent.addListener(marker, 'click’,
function() {
marker.openlinfoWindowHtml(description);
}
);

map.addOverlay(marker);

}

function init() {
if (GBrowserlsCompatible()) {
map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

addMarker(centerLatitude, centerLongitude, description);

}

window.onload = init;
window.onunload = GUnload;

25

26

CHAPTER 2 GETTING STARTED

This is a nice clean function that does everything you need for plotting a pin with a click-
able information bubble. Now youQre perfectly set up for plotting a whole bunch of markers on
your map.

A List of Points

In Listing 2-3, we introduced the variables centerLongitude and centerLatitude . Global vari-
ables like these are fine for a single centering point, but what you probably want to do is store
a whole series of values and map a bunch of markers all at once. Specifically, you want a list of
latitude and longitude pairs representing the points of the markers youOll plot.

Using Arrays and Objects

To store the list of points, you can combine the power of JavaScriptOsarray and object constructs.
An array stores a list of numbered entities. An object stores a list of keyed entities, similar to
how a dictionary matches words to definitions. Compare these two lines:

var myArray = ['John', 'Sue’, 'James', 'Edward";
var myObject = {John": 19, 'Sue': 21, 'James": 24, 'Edward": 18},

To access elements of the array, you must use their numeric indices. So, myArray[0] is
equal to 'John' , and myArray[3] is equal to 'Edward' .

The object, however, is slightly more interesting. In the object, the names themselvesare
the indices, and the numbers are the values. To look up how old Sue is, all you do is check the
value of myObiject['Sue .

Note For accessing members of an object, JavaScript alloySHett'Sue’] and the alternative
notatiomyObject.Sue The second is usually more convenient, but the first is important if the value of the
index you want to access is stombitheyariable, for exampte;Object[someName]

For each marker you plot, you want an object that looks like this:

var myMarker = {
'latitude': 37.818361,
'longitude’: -122.478032,
‘name": 'Golden Gate Bridge'

Having the data organized this way is useful because the related information is grouped as
OchildrenO of a common parent object. The variables are no longer just latitude and longitude N
now they are myMarker.latitude and myMarker.longitude .

Most likely, for your application youOll want more than one marker on the map. To proceed
from one to many, itOs just a matter of having an array of these objects:

var myMarkers = [Markerl, Marker2, Marker3, Marker4];

CHAPTER 2 GETTING STARTED 27

Then you can cycle through the array, accessing the members of each object and plotting

a marker for each entity.
When the nesting is combined into one step (Figure 2-5), it becomes a surprisingly elegant

data structure, as in Listing 2-7.

Listing 2-7. A JavaScript Data Structure for a List of Locations

var markers = [

{
'latitude": 37.818361,
'longitude": -122.478032,
‘name": 'Golden Gate Bridge'
h
{
'latitude’: 40.6897,
'longitude’: -74.0446,
‘name’": 'Statue of Liberty'
h
{
'latitude': 38.889166,
'longitude': -77.035307,
‘name": 'Washington Monument'
}
I
markers
0 1 2
latitude latitude latitude
longitude longitude longitude
(-122.478032) | | (-74.0448) | | (-77.035307)
name name name

Figure 2-5.A series of objects stored inside an array

As youQll see in the next section, JavaScript provides some terrific methods for working
with data in this type of format.

Note In this book, youOll see primarily MySQL used for storing data permanently. Some people howevel
have proposed the exact format in Figure 2-5 as an alternative to XML, calling it JSON, for JavaScript Obj
Notation. While there are some advantages, JSONOs plethora of punctuation can be intimidating to a le
technical person. You can find more information orh@@Naatorg . WeOll still be using a lot of
JSON-like structures for communicating data from the server to the browser.

28

CHAPTER 2 GETTING STARTED

Iterating

JavaScript, like many languages, provides afor loopNa way of repeating a block of code for
SO many iterations, using a counter. One way of cycling through your list of points would be
aloop such as this:

for (id = 0; id < markers.length; id++) {
/I create a marker at markers[id].latitude, markers[id].longitude

}

However, JavaScript also provides a much classier way of setting this up. 1tOs called &or in
loop. Watch for the difference:

for (id in markers) {
/I create a marker at markers][id].latitude, markers[id].longitude

}

Wow. It automatically gives you back every index that exists in an array or object, without
needing to increment anything manually, or ever test boundaries. Clearly, youOll want to use
aforin loop to cycle over the array of points.

Until now, the map_data.phgfile has been empty and youOve been dealing mainly with the
map_functions.js file. To show a list of markers, you need to include the list, so this is where
map_data.phpcomes in. For this chapter, youOre not going to actually use any PHP, but the
intention is that you can populate that file from database queries or some other data store.
WeOve named the file with the PHP extension so you can reuse the same base code in later
chapters without the need to edit everything and start over. For now, pretend the PHP file is
like any other normal JavaScript file and create your list of markers there. As an example, pop-
ulate your map_data.phgfile with the structure from Listing 2-7.

To get that structure plotted, itOs just a matter of wrapping the marker-creation code in
aforin loop, as shown in Listing 2-8.

Listing 2-8. map_functions.js Modified to Use the Markers from map_data.php

var map;

var centerLatitude = -95.0446;
var centerLongitude = 40.6897;
var startZoom = 3;

function addMarker(longitude, latitude, description) {
var marker = new GMarker(new GLatLng(latitude, longitude));

GEvent.addListener(marker, click’,
function() {
marker.openinfoWindowHtml(description);
}
);

map.addOverlay(marker);

CHAPTER 2 GETTING STARTED

function init() {
if (GBrowserlsCompatible()) {
map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

for(id in markers) {
addMarker(markers][id].latitude, markers[id].longitude, markers[id].name);

}
}

window.onload = init;
window.onunload = GUnload,;

Nothing here should be much of a surprise. You can see that the addMarker() function is
called for each of the markers, so you have three markers and three different info windows.

Summary

With this chapter complete, youOve made an incredible amount of progress! YouOve looked at
several good programming practices, seen how to plot multiple markers, and popped up the
info window. And all of this is in a tidy, reusable package.

So what will you do with it? Plot your favorite restaurants? Mark where you parked the
car? Show the locations of your business? Maybe mark your band®s upcoming gigs?

The possibilities are endless, but itOs really just the beginning. In the next chapter, youOll be
expanding on what you learned here by creating your map data dynamically and learning the
key to building a real community: accepting user-submitted information. After that, the weird
and wonderful science of geocodingNturning street addresses into latitudes and longitudesN
will follow, along with a variety of tips and tricks you can use to add flavor to your web
applications.

29

CHAPTER 3

Interacting with the User
and the Server

I\I)W that youOve created your first map (in Chapter 2) and had a chance to perform some ini-
tial experiments using the Google Maps AP, itOs time to make your map a little more useful
and dynamic. Most, if not all, of the best Google Maps mashups rely on interaction with the
user in order to customize the information displayed on the map. As youOve already learned,
itOs relatively easy to create a map and display a fixed set of points using static HTML and a bit
of JavaScript. Anyone with a few minutes of spare time and some programming knowledge
could create a simple map that would, for example, display the markers of all the places he
visited on his vacation last year. A static map such as this is nice to look at, but once youOve
seen it, what would make you return to the page to look at it again? To keep people coming
back and to hold their attention for longer than a few seconds, you need a map with added
interactivity and a bit of flair.

You can add interactivity to your map mashups in a number of ways. For instance, you
might offer some additional detail for each marker using the info window bubbles introduced
in Chapter 2, or use something more elaborate such as filtering the markers based on search
criteria. Google Maps, GoogleOs public mapping site (http://maps.google.com/) is a mashup of
business addresses and a map to visually display where the businesses are located. It provides
the required interactivity by allowing you to search for specific businesses, and listing other
relevant businesses nearby, but then goes even further to offer driving directions to the marked
locations. Allowing you to see the location of a business youQre looking for is great, but telling
you how to get there in your car, now thatOs interactivity! Without the directions, the map would
be an image with a bunch of pretty dots, and you would be left trying to figure out how to get
to each dot. Regardless of how itOs done, the point is that interacting with the map is always
important, but donOt go overboard and overwhelm your users with too many options.

In this chapter, well explore a few examples of how to provide interactivity in your map using
the Google Maps API, and youOll see how you can use the API to save and retrieve information
from your server. While building a small web application, youOll learn how to do the following:

¥ Trigger events on your map and markers to add either new markers or info windows.
¥ Modify the content of info windows attached to a map or to individual markers.
¥ Use GoogledsXmlHttpobject to communicate with your server.

¥ Improve your web application by changing the appearance of the markers.

31

32

CHAPTER 3 INTERACTING WITH THE USER AND THE SERVER

Going on a Treasure Hunt

To help you learn about some of the interactive features of the Google Maps API, youOre going
to go on a treasure hunt and create a map of all the treasures you find. The treasures in this
case are geocaches, those little plastic boxes of goodies that are hidden all over the earth.

For those of you who are not familiar with geocachegnot to be confused with geocoding,
which we will discuss in the next chapter), or geocachingas the activity is commonly referred
to, it is a global Ohide-and-seekO game that can be played by anyone with a Global Positioning
System (GPS) device (Figure 3-1) and some treasure to hide and seek. People worldwide place
small caches of trinkets in plastic containers, and then distribute their GPS locations using the
Internet. Other people then follow the latitude and longitude coordinates and attemptto locate
the hidden treasures within the cache. Upon finding a cache, they exchange an item in the
cache for something of their own.

Figure 3-1.A common handheld GPS device used by geocachers to locate hidden geocaches

Note For more information about geocaching, check out the official Geocachity/imehsite (
geocaching.con) or pick ugeocaching: Hike and Seek with Yoby GRSSherméutt:/mwww.apress.
com/book/bookDisplay.html?blD=194).

As you create your interactive geocache treasure map, youOll learn how to do the following:

CHAPTER 3 INTERACTING WITH THE USER AND THE SER3ZER

¥ Create a map and add a JavaScript event trigger using theGEvent.addListener()
method to react to clicks by the users, so that people who visit the map can mark their
finds on the map.

¥ Ask users for additional information about their finds using an info window and an
embedded HTML form.

¥ Save the latitude, longitude, and additional information in the form to your server
using the GXmlHttpAsynchronous JavaScript and XML (Ajax) object on the client side
and PHP on the server.

¥ Retrieve the existing markers and their additional information from the server using
Ajax and PHP.

¥ Re-create the map upon loading by inserting new markers from a server-side list, each
with an info window to display its information.

For this chapter, weOre not going to discuss any CSS styling of the map and its contents;
weOll leave all that up to you.

Creating the Map and Marking Points

YouQll begin the map for this chapter from the same set of files introduced in Chapter 2, which
include the following:

¥ index.php to hold the XHTML of the page
¥ map_functions.js to hold the JavaScript functionality
¥ map_data.phpo create a JavaScript array and objects representing each location on the map

Additionally, youll create a file called storeMarker.php to save information back to the
server and another file called retrieveMarkers.php to retrieve XML using Ajax, but weQll get to
those later.

Starting the Map

To start, copy the index.php file from Listing 2-2 and the map_functions.js file from Listing 2-3
into a new directory for this chapter. Also, create an empty map_data.phpfile and empty
store Marker.php and retrieveMarkers.php files.

While building the map for this chapter and other projects, youOll be adding auxiliary
functions to the map_functions.js file. You may have noticed in Chapter 2 that you declared
the mapvariable outside the init() function in Listing 2-2. Declaring mapoutside the init()
function allows you to reference magat any time and from any auxiliary functions you add to
the map_functions.js file. It will also ensure youOre targeting the samemapbject. Also, you
may want to add some of the control objects introduced in Chapter 2, such as GMapTypeControl
Listing 3-1 highlights the mapvariable and additional controls.

34

CHAPTER 3 INTERACTING WITH THE USER AND THE SERVER

Listing 3-1. Highlights for map_functions.js

var centerLatitude = 37.4419;
var centerLongitude = -122.1419;
var startZoom = 12;

var map;

function init() {
if (GBrowserlsCompatible()) {
map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMap2TypeControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

window.onload = init;
window.onunload = GUnload,;

Now you have a solid starting point for your web application. When viewed in your web
browser, the page will have a simple map with controls centered on Palo Alto, California
(Figure 3-2). For this example, the starting GLatLngis not important, so feel free to change it to
some other location if you wish.

[Map [Sateilie][Fybid |

Figure 3-2.Starting map with controls centered on Palo Alto, California

CHAPTER 3 INTERACTING WITH THE USER AND THE SER3%ER

Listening to User Events

The purpose of your map is to allow visitors to add markers wherever they click. To capture

the clicks on the map, youOll need to trigger a JavaScript function to execute whenever the map
area is clicked. As you saw in Chapter 2, GoogleOs API allows you to attach these triggers, called
event listeners to your map objects through the use of the GEvent.addListener() method. You
can add event listeners for a variety of events, including moveand click , but in this case, you
are interested only in users clicking the map, not moving it or dragging it around.

Tip If you refer to the Google Maps API docuniaragipemdix B, youOll netidee varietyf events
for both th&Mapand thesMarkermobjects, as well as a few others. Each of these different events can be
used to add varying amounts of interactivity to your map. For example, you rooutsk e ¢me for
theGMap® trigger an Ajax call and retrieve points for the new area of the map. For the geocaching map
example, you could also us&Marke®infowindowclose event to check to see if the information in
the form has been saved and if not, ask the user what to do. You can also attach events to Document
Object Model (DOM) elements @Event.addDomListener() and trigger an event using JavaScript
with theGEvent.trigger() method.

The GEvent.addListener() method handles all the necessary code required to watch for
and trigger each of the events. All you need to do is tell it which object to watch, which event
to listen for, and which function to execute when itOs triggered.

GEvent.addListener(map, "click", function(overlay, lating) {
/lyour code

D

Given the source mapand the event click , this example will trigger the function to run any
code you wish to implement.

Take a look at the modification to the init() function in Listing 3-2 to see how easy it is to
add this event listener to your existing code and use it to create markers the same way you did
in Chapter 2. The difference is that in Chapter 2, you used new GLatLng()to create the latitude
and longitude location for the markers, whereas here, instead of creating anew GLatLngyou can
use the lating variable passed into the event listenerOs handler function. The lating variable is
a GLatLngrepresentation of the latitude and longitude where you clicked on the map. The overlay
variable is the overlay where the clicked location resides if you clicked on a marker or another
overlay object.

Listing 3-2. Using the addListener() Method to Create a Marker at the Click Location

function init() {
if (GBrowserlsCompatible()) {
map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMap2TypeControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

36 CHAPTER 3 INTERACTING WITH THE USER AND THE SERVER

/lallow the user to click the map to create a marker

GEvent.addListener(map, "click", function(overlay, lating) {
var marker = new GMarker(lating)
map.addOverlay(marker);

b

Ta-da! Now, with a slight code addition and one simple click, anyone worldwide could
visit your map page and add as many markers as they want (Figure 3-3). However, all the
markers will disappear as soon as the user leaves the page, never to be seen again. To keep the
markers around, you need to collect some information and send it back to the server for stor-
age using the GXmilHttpobject or the GDownloadUrbbject, which wedll discuss in the OUsing
GoogleOs Ajax ObjectO section later in this chapter.

o

=

e
G-

Figure 3-3.New markers created by clicking on the map

CHAPTER 3 INTERACTING WITH THE USER AND THE SERYER

RETRIEVING THE LATITUDE AND LONGITUDE FROM A MAP CLICK

When you click on a Google maptitig variable passed into the event listenerOs handler function is
aGLatLngobject wittat() anding() methods. Using tla¢() anding() methods makes it relatively

easy for you to retrieve the latitude and longitude of any point on earth simply by zooming in and clicking on
the map. This is particularly useful when you are trying to find the latitude and longitude of places that do not
have readily accessible latitude/longitude information for addresses.

In countries where there is excellent latitude and longitude information, such as the United States, Canada,
and more recently, France, Italy, Spain and Germany, you can often use an address lookup service to retrieve
the latitude and longitude of a street address. But in other locations, such as the United Kingdom, the data is
limited or inaccurate. In the case wiataeanOt be readily retrieved by computer, manual human entry of
points may be required. For méwamation about geocoding and using addresses to find latitude and longi-
tude, see Chapter 4.

Additionally, If you want to retrieve the X and Y coordinates of a position on the map in pixels on the
screen, you can use fiteenLatLngToDivPixel() method of the Mapabject. By passing iGhatLng
objectGMap2.fromLatLngToDivPixel(lating) will return &Point representation of the X and Y off-
set relative to the DOM element containing the map.

Asking for More Information with an Info Window

You could simply collect the latitude and longitude of each marker on your map, but just the
location of the markers would provide only limited information to the people browsing your
map. Remember interactivity is key, so you want to provide a little more than just a marker.
For the geocaching map, visitors really want to know what was found at each location. To pro-
vide this extra information, letOs create a littte HTML form. When asking for input of any type
in aweb browser, you need to use HTML form elements. In this case, letOs put the form in an
info window indicating where the visitor clicked.

As introduced in Chapter 2, the info window is the cartoon-like bubble that often appears
when you click map markers (Figure 3-4). It is used by Google Maps to allow you to enter the
To Here or From Here information for driving directions, or to show you a zoomed view of the
map at each point in the directions. Info windows do not need to be linked to markers on the
map. They can also be created on the map itself to indicate locations where no marker is present.

38

CHAPTER 3 INTERACTING WITH THE USER AND THE SERVER

o 38

et e 2 e

i f gt 114] . I rl_-:i-ll | i f
o I _::..'_:::r _ - |
- - ; (] ¥ .:__s%:,, _._.%1 '-_::I".""'.
WEPLS N
"."'ll..: |'lll | i I—J !.-u,l_ p—
R I | s \
o ; I

=
!\

e,
r .
o

=
il
¢
5

l::- 'I.. -'.-.I'l-hhh"'\-;
o
e Ty 2 |
e A !
. Wl
L !
-r_'-" ._
; 113_':.'-': 'f Vi BN ¢

Stanford | “
Ehlldrens Husprlal P3|n A]tﬂ <

Y onnd G RS, LR
"o (Y @ %ﬂ S R
Figure 3-4.An empty info window
YouOre going to use the info window for two purposes:

¥ It will display the information about each existing marker when the marker is clicked.

¥ It will hold a little HTML form so that your geocachers can tell you what theyOve found.

Note When we introduce @¥miHttpobject in the OUsing GoogleOs Ajax ObjectO section later in this
chapter, weQll explain how to save the content of the info window to your server.

Creating an Info Window on the Map

In Listing 3-2, you used the event listener to create a marker on your map where it was clicked.
Rather than creating markers when you click the map, youOll modify your existing code to create
an info window. To create an info window directly on the map object, call the openinfowindow()
method of the map:

CHAPTER 3 INTERACTING WITH THE USER AND THE SER3%ER

GMap2.openinfoWindow(GLatLng, htmIDomElem, GinfowindowOptions);

openinfoWindow() takes aGLatLngas the first parameter and an HTML DOM document
element as the second parameter. The last parameter, GInfoWindowOptionsis optional unless
you want to modify the default settings of the window.

For a quick demonstration, modify Listing 3-2 to use the following event listener, which
opens an info window when the map is clicked, rather than creating a new marker:

GEvent.addListener(map, "click", function(overlay, lating) {
map.openinfoWindow (lating,document.createTextNode("You clicked here!"));

D

Now when you click the map, youQll see an info window pop up with its base pointing at
the position you just clicked with the content OYou clicked here!O (Figure 3-5).

n : 114 F : -
/ g&- x %%% iy sl = [Map || Sawellite][Hybrid |
= o -5 2 : Sld pay, Rd < o L 2 |
W~ o g W [
f = Iz
- .‘_Q' § o f : ‘g
2 |) gy z \
'?q?‘. ¢ - .Y__\.@ & LT = H y
A Sl Paio Alto Arpt
Sl Bengint’ 6? £ .Cemetery Qf Santa Clara
P I N > S T 2
T > N T Pl Te— S Y
TRREY 0 o0, TN T :
5 -] i \)&é : {
@‘Qa.ﬁé & Y g |
oy ; R Palo Alto
_-?%e- S .- Medical Clinic
f & { Stanford SR
f Yo ey Childrens Hospital | Pala Alto - .
! . Stanford . B i
) 7 7 University Hospital %‘) %
.’.'”':'_ 4 4 :%.Q- % : SR & _‘F’-ﬁ” ¢ : o) Shoraline
: » - 5 5 5 Golf Link
- = : i el {,Q‘@ ¢ olf Links
¥ = { ; : o 2 I Ao \ _\‘_] N's,r
| stanfoed Univ o "l =l Ty o QWM- L el B ——
2 Golf Course . S W TR x Lol Rd
: 2 , I ; " . : . : =
- aZ QT @ N bl
& B = R S LS, | 29 b

g
GQ“S‘E\ M % Map data'e; '5Tabm.;ﬁ,$er:n§'&€%g

Figure 3-5.An info window created when clicking the map

Embedding a Form into the Info Window

When geocachers want to create a new marker, youOll first prompt them to enter some informa-
tion about their treasure. YouOll want to know the geocacheQs location (this will be determined
using the point where they clicked the map), what they found at the location, and what they
left behind. To accomplish this in your form, youOll need the following:

40 CHAPTER 3 INTERACTING WITH THE USER AND THE SERVER

¥ A text field for entering information about what they found

¥ A text field for entering information about what they left behind
¥ A hidden field for the longitude

¥ A hidden field for the latitude

¥ A submit button

The HTML form used for the example is shown in Listing 3-3, but as you can see in Listing 3-4,
you are going to use the JavaScript Document Object Model (DOM) object and methods to create
the form element. You need to use DOM because the GMarker.openinfoWindow()method expects an
HTML DOM element as the second parameter, not simply a string of HTML.

Tip If you want to make the form a little more presentable, you could easily add ids and/or classes to the
form elements and use CSS styles to format them accordingly.

Listing 3-3. HTML Version of the Form for the Info Window

<form action="" onsubmit="storeMarker(); return false;">
<fieldset style="width:150px;">
<legend>New Marker</legend>
<label for="found">Found</label>
<input type="text" id="found" style="width:100%;"/>
<label for="left">Left</label>
<input type="text" id="left" style="width:100%;"/>
<input type="submit" value="Save"/>
<input type="hidden" id="longitude"/>
<input type="hidden" id="latitude"/>
<[fieldset>
</form>

Note You may notice the form in Listing 3-3 basuimit event attribute that callgaeMarker()
JavaScript function. BlmeMarker() function does not yet exist in your script, and if you try to click the
Savébutton, youOll get a JavaScript error. Ignore this for now, as youSireMatketfe function
in the OSaving Data with GXmIHttpO section later in the chapter, when you save the form contents to the se

CHAPTER 3 INTERACTING WITH THE USER AND THE SERAIER

Listing 3-4. Adding the DOM HTML Form to the Info Window

GEvent.addListener(map, "click", function(overlay, lating) {

/lcreate an HTML DOM form element

var inputForm = document.createElement(“form");
inputForm.setAttribute("action","");

inputForm.onsubmit = function() {storeMarker(); return false;};

/Iretrieve the longitude and lattitude of the click point
var Ing = lating.Ing();
var lat = lating.lat();

inputForm.innerHTML = '<fieldset style="width:150px;">"
+ '<legend>New Marker</legend>'
+ '<label for="found">Found</label>'
+ '<input type="text" id="found" style="width:100%;"/>'
+ '<label for="left">Left</label>'
+ '<input type="text" id="left" style="width:100%;"/>'
+ '<input type="submit" value="Save"/>'
+ '<input type="hidden" id="longitude" value="" + Ing +"/>'
+ '<input type="hidden" id="latitude" value="" + lat +"/>'
+ '</fieldset>";

map.openinfoWindow (lating,inputForm);

D

Cautionwhen creating the Dioivh element, you need to usesthattribute() method to define
things lik@ameaction , target , andmethod but once you venture beyond these basic four, you may begin
to notice inconsistencies. For examplesetsitagoute() to define@nsubmit works fine iMozilladbased
browsers but not in Microsoft Internet Explorer browsers. For cross-browser compatibility, you need to defin
onsubmit using a function, as you did in Listing 3-4. For more detailed information regarding DOM and how
to use it, check out the DOM section of the W3Schools mgh#itevatw3schools.com/dom/ .

After youOve changed theGEvent.addListener() call in Listing 3-2 to the one in Listing 3-4,
when you click your map, youOll see an info window containing your form (Figure 3-6).

42

CHAPTER 3 INTERACTING WITH THE USER AND THE SERVER

: = e N - _
o T T 1, G 14 Al Map Satellie Hybrid
s = ‘B i
5 | 7 B LS b e OOREALTEA
A TR S 8f7 Rt s gy Rl) D |
EENE e s
[: 7 Sl S d New Marker z
- T gl [Found .
7o A
p LR f & Saift Patricks Paio Alto Arpt .
e &g o 7 - Camateny Left Of Santa Clara,
g IRV S/ :
L 1 = 3 \..@owﬁ“. . Save I -
BV LN L RO .
S S % R Pl A
f S sanprd)R S g Y TR
f s S i 7l Ch.ildr.uns.HUspilal. Palo j.)‘!to % ; \:ad" e #we ; ‘\\ v
“Stanford__ o T el L ratth, G
7 University Hospital %’) AN % dégf < tﬁd a, .\\\
e X OLES T Y 8, i~ Nk
L T _:%Q_.) } 5 o N ﬁw?‘-. Rah, 8 g:{?cgl-ne
. ', . . = = A 5 2 - N A ' m ol Links
S / SIS ST NN O L 2 R '*x st
! Stanfged Univ "_ o 7 Sl 3 S i}l@ 2 [N, e =
[=4 Gfl}ll_warsfe_ ! 0‘« o sy o N e e Rd —
2 %‘3@;' caﬁ‘c AR 7 1%9@ AN ‘rc‘@e@ (7t .. 1
B e 5 /o g \, |
} { P ; i gg = o
b - / NS Sy
Gapgle, o _ : %%A Map data'©005 Tels Atias 514/t Mens

Figure 3-6.The info window with an embedded form

In Listing 3-4, the latitude and longitude elements of the form have been pre-populated
with the lating.lat() and lating.Ing() values from the GLatLngobject passed in to the event
listener. This allows you to later save the latitude and longitude coordinates and re-create the
marker in the exact position when you retrieve the data from the server. Also, once the informa-
tion has been saved for the new location, you can use this latitude and longitude to instantly
create a marker at the new location, bypassing the need to refresh the web browser to show
the newly saved point.

If you click again elsewhere on the map, youOll also notice your info window disappears
and reappears at the location of the new click. As a restriction of the Google Maps API, you can
have only one instance of the info window open at any time. When you click elsewhere on the
map, the original info window is destroyed and a brand-new one is created. Be aware that it is
not simply moved from place to place.

You can demonstrate the destructive effect of creating a new info window yourself by fill-
ing in the form (Figure 3-7), and then clicking elsewhere on the map without clicking the Save
button. YouOll notice that the information you entered in the form disappears (Figure 3-8)
because the original info window is destroyed and a new one is created.

CHAPTER 3 INTERACTING WITH THE USER AND THE SERAZER

Figure 3-7.Info window with populated form information

al /S e [Seetie J[_rhora]
T ¥ /f

Apns

SN

: B I |

@ﬁ’*ﬁ@@@& ol zc;, 8
5 «,'{‘1 =) ar,\ g
L Y

s

SR IS
b

Figure 3-8.New info window that has lost the previously supplied information

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SHTS

To layer your data using the same tile structure as the Google Maps API, youOll need to cre-
ate each of your tiles to match the existing Google tiles. Along with the sample code for the
book, weOve included a PHPGoogleMapsUtility class in Listing 7-11, which has a variety of
useful methods to help you create your tiles. The tile script for the custom tile method (shown
later in Listing 7-13) uses the methods of the GoogleMapsUtility class to calculate the various
locations of each point on the tile. The calculations in the utility class are based on the
Mercator projection, which weQll discuss further in Chapter 9, when we talk about types of
map projections.

Listing 7-11. The GoogleMapUltility Class Methods for Tile Construction

<?php

class GoogleMapUtility {
/IThe Google Maps all use tiles 256x256
const TILE_SIZE = 256;
/**
* Convert from a pixel location to a geographical location.
**/
public static function fromXYToLatLng($point,$zoom) {
$mapWidth = (1 << ($zoom)) * GoogleMapUltility::TILE_SIZE;

return new Point(
(int)($normalised->x * $mapWidth),
(int)($normalised->y * $mapWidth)

}

/**

* Calculate the pixel offset within a specific tile
* for the given latitude and longitude.
**/
public static function getPixelOffsetInTile($lat,$Ing,$zoom) {
$pixelCoords = GoogleMapUstility::toZoomedPixelCoords(
$lat, $Ing, $zoom
);
return new Point(
$pixelCoords->x % GoogleMapUitility:: TILE_SIZE,
$pixelCoords->y % GoogleMapUtility:: TILE_SIZE

}

/**
* Determine the geographical bounding box for the specified tile index
* and zoom level.
**/
public static function getTileRect($x,$y,$zoom) {
$tilesAtThisZoom = 1 << $zoom;

178 CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SETS

$IngWidth = 360.0 / $tilesAtThisZoom;
$ing = -180 + ($x * $IngWidth);

$latHeightMerc = 1.0 / $tilesAtThisZoom;
$topLatMerc = $y * $latHeightMerc;
$bottomLatMerc = $topLatMerc + $latHeightMerc;

$bottomLat = (180 / M_PI) * ((2 * atan(exp(M_PI *
(1 - (2 * $bottomLatMerc))))) - (M_PI/ 2));
$topLat = (180 / M_PI) * ((2 * atan(exp(M_PI *
(1 - (2 * $topLatMerc))))) - (M_PI / 2));

$latHeight = $topLat - $bottomLat;

return new Boundary($Ing, $bottomLat, $IngWidth, $latHeight);
}

/*'k
* Convert from latitude and longitude to Mercator coordinates.
*%
/
public static function toMercatorCoords($lat, $Ing) {
if ($ing > 180) {
$Ing -= 360;
}

$Ing /= 360;
$lat = asinh(tan(deg2rad($lat)))/M_P1/2;
return new Point($Ing, $lat);

}

/*'k

* Normalize the Mercator coordinates.
**/
public static function toNormalisedMercatorCoords($point) {
$point->x += 0.5;
$point->y = abs($point->y-0.5);
return $point;

}

/*'k

* Calculate the pixel location of a latitude and longitude point
* on the overall map at a specified zoom level.
**/
public static function toZoomedPixelCoords($lat, $Ing, $zoom) {
$normalised = GoogleMapUstility::toNormalisedMercatorCoords(
GoogleMapUtility::toMercatorCoords($lat, $Ing)
)i

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA S§BTS

$scale = (1 << ($zoom)) * GoogleMapUitility:: TILE_SIZE;
return new Point(

(int) ($normalised->x * $scale),

(int)($normalised->y * $scale)

}

/*'k

* Object to represent a coordinate point (x,y).

'k*/
class Point {
public $x,%y;
function __construct($x,$y) {
$this->x = $x;
$this->y = $y;
}
function __toString() {
return "({$this->x},{$this->y}H";
}
}
/*'k

* Object to represent a boundary point (x,y) and (width,height)
**/
class Boundary {
public $x,$y,$width,$height;
function ___construct($x,$y,$width,$height) {
$this->x = $x;
$this->y = $y;
$this->width = $width;
$this->height = $height;
}
function __toString() {
return "({$this->x},{$this->y} {$this->width} {$this->height})";
}

?>

180

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SETS

Using the GoogleMapsUtility class, you can determine what information you need to
include in each tile. For example, in the client-side JavaScript for the custom tile method in
Listing 7-12 (which youOll see soon), each tile request:

var tileURL = "server.php?x="+tile.x+"&y="+tile.y+"&zoom="+zoom;

contains three bits of information: an X position, aY position, and the zoom level. These three
bits of information can be used to calculate the latitude and longitude boundary of a specific
Google tile using the GoogleMapsUitility::getTileRect method, as demonstrated in the
server-side PHP script for the custom tiles in Listing 7-13 (also coming up soon). The X and Y
positions represent the tile number of the map relative to the top-left corner, where positive X

and Y are east and south, respectively, starting at 1 and increasing as illustrated in Figure 7-8.
You can also see that the first column in Figure 7-8 contains tile (7,1) because the map has
wrapped beyond the meridian, so the first col umn is actually the rightmost edge of the map
and the second column is the leftmost edge.

(3.1) @ zoom 34

i

e
|

(7.2} @ zoom 3

Figure 7-8.Google tile numbering scheme

The zoom level is also required so that the calculations can determine the latitude
and longi tude resolution of the current map. For now, play with the example in Listings 7-12
and 7-13 (http://googlemapsbook.com/chapter7/ServerCustomTiles/). In Chapter 9, youOll get
into the math required to calculate the proper position of latitude and longitude on the Mer-
cator projection, as well as a few other projections.

For the sample tiles, weOve drawn a colored circle outlined in white with each color repre-
senting the height of the tower, as shown in Figure 7-9.

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA BHTS

Figure 7-9.The finalized custom tile map in satellite mode

For testing purposes, each tile is also labeled with the date/time tile number and the
number of points in that tile. If you look at the online example, youOll notice that the tiles ren-
der very quickly. Once drawn, the tiles are cached on the server side so when requested again, the
tiles are automatically served up by the server. Originally, when the tiles were created for zoom
level 1, some took up to 15 seconds to render, as there were almost 50,000 points per tiles in the
United States. If the data on your map is continually changing, you may want to consider
running a script to create all the tiles before publishing your map to the Web so your first
visitors donQt experience a lag when the tiles are first created.

Listing 7-12. Client-Side JavaScript for the Custom Tile Method

var map;
var centerlLatitude = 49.224773;
var centerLongitude = -122.991943;
var startZoom = 6;

llcreate the tile layer object
var detailLayer = new GTileLayer(new GCopyrightCollection("));

/Imethod to retrieve the URL of the tile

detailLayer.getTileUrl = function(tile, zoom){
/lpass the x and y position as well as the zoom
var tileURL = "server.php?x="+tile.x+"&y="+tile.y+"&zoom="+zoom;
return tileURL;

182

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SETS

detailLayer.isPng = function() {
/lthe example uses GIFs
return false;

}

//add your tiles to the normal map projection
detailMapLayers = G_NORMAL_MAP.getTileLayers();
detailMapLayers.push(detailLayer);

/ladd your tiles to the satellite map projection
detailMapLayers = G_SATELLITE_MAP.getTileLayers();
detailMapLayers.push(detailLayer);

function init() {
map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

}

window.onload = init;

Listing 7-13. Server-Side PHP for the Custom Tile Method

<?php

/linclude the helper calculations
require('GoogleMapUitility.php");

/lthis script may require additional memory and time
set_time_limit(0);
ini_set('memory_limit',8388608*10);

/[create an array of the size for each marker at each zoom level
$markerSizes = array(1,1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12);

//get the lat/ng bounds of this tile from the utility function
/Ireturn a bounds object with width,height,x,y
$rect = GoogleMapUstility::getTileRect(

(in)$_GET['xT],

(in)$_GET['y1,

(int)$_GET['zoom']

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA S8TS

llcreate a unique file name for this tile
$file = 'tiles/c'.md5(
serialize($markerSizes).
serialize($rect)."|".
$ GET[X].]".
$ GET[Y].].
$_GET['zoom?).
“gif;

llcheck if the file already exists
if('file_exists($file)) {

/lcreate a new image

$im = imagecreate(GoogleMapUtility:: TILE_SIZE,GoogleMapUstility:: TILE_SIZE);
$trans = imagecolorallocate($im,0,0,255);

imagefill($im,0,0,$trans);

imagecolortransparent($im, $trans);

$black = imagecolorallocate($im,0,0,0);

$white = imagecolorallocate($im,255,255,255);

//set up some colors for the markers.

/leach marker will have a color based on the height of the tower
$darkRed = imagecolorallocate($im,150,0,0);

$red = imagecolorallocate($im,250,0,0);

$darkGreen = imagecolorallocate($im,0,150,0);

$green = imagecolorallocate($im,0,250,0);

$darkBlue = imagecolorallocate($im,0,0,150);

$blue = imagecolorallocate($im,0,0,250);

$orange = imagecolorallocate($im,250,150,0);

/linit some vars

$extend = 0;

$z = (int)$_GET['zoom’;
$swlat=$rect->y + $extend,
$swing=%rect->x+ $extend,
$nelat=$swlat+$rect->height + $extend,;
$nelng=$swing+$rect->width + $extend;

/lconnect to the database
require($_SERVER['DOCUMENT_ROOT"] . /db_credentials.php);
$conn = mysql_connect("localhost”, $db_name, $db_pass);
mysql_select_db("googlemapsbook”, $conn);

/*

* Retrieve the points within the boundary of the map.

* For the FCC data, all the points are within the US so we
* don't need to worry about the meridian problem.

*/

184

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SETS

$result = mysql_query(
"SELECT
longitude as Ing,latitude as lat,struc_height,struc_elevation
FROM
fcc_towers
WHERE
(longitude > $swing AND longitude < $nelng)
AND (latitude <= $nelat AND latitude >= $swlat)
ORDER BY
lat"
, $conn);

//get the number of points in this tile
$count = mysqgl_num_rows($result);

$filled=array();
$row = mysql_fetch_assoc($result);
while($row)
{
/lget the x,y coordinate of the marker in the tile
$point = GoogleMapUstility::getPixelOffsetinTile($row['lat'],$row['Ing'],$2);

/lcheck if the marker was already drawn there
if($filled["{$point->x},{$point->y}"]<2) {

/Ipick a color based on the structure's height
if($row['struc_height']<=20) $c = $darkRed;
elseif($row['struc_height']<=40) $c = $red;
elseif($row['struc_height']<=80) $c = $darkGreen,;
elseif($row['struc_height']<=120) $c = $green;
elseif($row['struc_height']<=200) $c = $darkBlue;
else $c = $blue;

/lif there is aready a point there, make it orange
if($filled["{$point->x},{$point->y}"]==1) $c=$orange;

llget the size
$size = $markerSizes[$z];

/ldraw the marker
if($z<2) imagesetpixel($im, $point->x, $point->y, $c);
elseif($z<12) {
imagefilledellipse($im, $point->x, $point->y, $size, $size, $¢);
imageellipse($im, $point->x, $point->y, $size, $size, $white);
}else {
imageellipse($im, $point->x, $point->y, $size-1, $size-1, $c);
imageellipse($im, $point->x, $point->y, $size-2, $size-2, $¢);

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA S35TS

imageellipse($im, $point->x, $point->y, $size+1, $size+1, $black);
imageellipse($im, $point->x, $point->y, $size, $size, $white);

}

/Irecord that we drew the marker
$filled["{$point->x},{$point->y}"T++;
}

$row = mysql_fetch_assoc($result);

}

/write some info about the tile to the image for testing
imagestring($im,1,-1,0,

"$count points in tile {$_GET['XT}{$_GET['Y]}) @ zoom $z ", $white);
imagestring($im,1,0,1,

"$count points in tile {$_GET['xT}{$_GET['Y]}) @ zoom $z ",$white);
imagestring($im,1,0,-1,

"$count points in tile {$_GET['xT}{$_GET['Y]}) @ zoom $z ",$white);
imagestring($im,1,1,0,

"$count points in tile {$_GET['xT}{$_GET['Y]}) @ zoom $z ", $white);
imagestring($im,1,0,0,

"$count points in tile {$_GET['xT}{$_GET['Y]}) @ zoom $z ",$black);
imagestring($im,1,0,9,date('r"),$black);

/loutput the new image to the file system and then send it to the browser
header('content-type:image/qgif;");

imagegif($im,$file);

echo file_get_contents($file);

}else {
/loutput the existing image to the browser

header('content-type:image/qif;");
echo file_get_contents($file);

?>

Tip Another benefit of using the tile layer is that it bypasses the cross-domain scripting restrictions on the
browser. Each tile is actually an image and nothing re&@®arheneters specify which tile the browser
is requesting, and the browser can load any image from any site, as it is not considered maliciousNitOs ju
an image.

186 CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SETS

BUT WHAT ABOUT INFO WINDOWS?

Using tiles to display your OmarkersQ is relatively easy, and you can simulate most of Gklékares of the
objectwith the exception of info windows. You canOt attach an info window to the pretend markers in your tile,
but you cafake it.

Back in Chapter 3, you created an info window when you clicked on the map by using
GMap2.openlfowWindowYou could do the same here, and then use an Ajax request to ask for the content of
the info window using stivitey like this:

GEvent.addListener(map, "click", function(marker, point) {
GDownloadUrl(
"your_server_side_script.php?"
+ "lat=" + point.lat()
+ "&Ing=" + point.Ing()
+ "&z=" + map.getZoom(),
function(data, responseCode) {
map.openinfoWindow(point,document.create TextNode(data));
b
i

The trick is figuring out what was actually clicked. When your users click your map, youOll need to send
the loctionOs latitude and longitude back to the server and have it determine what information is relative to that
point. If something was clicked, you can then send the appropriate information back across the Ajax request anc
create an info window directly on the map. From the clientOs point of view, it will look identical to an info window
attached to aarker, except that it will be slightly slower to appear, as your server needs to process the
request to see what was clicked.

Optimizing the Client-Side User Experience

If your data set is just a little too big for the mapNsomewhere between 100 to 300 pointsN
you donOt necessarily need to make new requests to retrieve your information. You can achieve
good results using solutions similar to those weOve outlined for the server side, but store the
data set in the browserOs memory using a JavaScript object. This way, you can achieve the same
effect but not require an excessive number of requests to the server.

The three methods weQll discuss are pretty much the same as the corresponding server-side
methods, except that the processing is all done on the client side using the methods of the API
rather than calculating everything on the server side:

¥ Client-side boundary method
¥ Client-side closest to a common point method
¥ Client-side clustering

After we look at these solutions using client-side JavaScript and data objects, weQll recom-
mend a couple other optimizations to improve your usersO experience.

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SHTS

Client-Side Boundary Method

With the server-side boundary method, you used the server to check if a point was inside the
boundary of the map. Doing so on the server side required that you write the calculation man-
ually into your script. Using the Google Maps API provides a much simpler solution, as you
can use the contains() method of the GLatLngBoundsebject to ask the API if your GLatLngpoint
is within the specified boundary. The contains() methods returns true if the supplied point is
within the geographical coordinates defined by the rectangular boundary.

Listing 7-14 (http://googlemapsbook.com/chapter7/ClientBounds/) shows the working
example of the boundary method implemented in JavaScript.

Listing 7-14. JavaScript for the Client-Side Boundary Method

var map;
var centerLatitude = 49.224773;

var centerLongitude = -122.991943;
var startZoom = 4;

function init() {
map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {

updateMarkers();

D;

GEvent.addListener(map, moveend',function() {
updateMarkers();

D

}

function updateMarkers() {
map.clearOverlays();
var mapBounds = map.getBounds();

/Nloop through each of the points from the global points object
for (k in points) {
var lating = new GLatLng(points[k].lat,points[k].Ing);
if(lmapBounds.contains(lating)) continue;
var marker = createMarker(lating);
map.addOverlay(marker);

188

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SETS

function createMarker(point) {
var marker = new GMarker(point);
return marker;

}

window.onload = init;

When you move or zoom the map, the updateMarkers() function loops through
a points object to create the necessary markers for the boundary of the viewable area. The
points JSONobject resembles the object discussed earlier in the chapter:

var points = {
pl:{lat:-53,Ing:-74},
p2:{lat:-51.4,Ing:59.51},
p3:{lat:-45.2,Ing:-168.43},
p4:{lat:-41.19,Ing:-174.46},
p5:{lat:-36.3,Ing:60},
p6:{lat:-35.15,Ing:-149.08},
p7:{lat:-34.5,Ing:56.11},

.. etc ...

p300:{lat:-33.24,Ing:70.4},

This object was loaded into the browser using another script tag, in the same way you
loaded the data into the map in Chapter 2. Now, rather than creating a new request to the
server, the points object contains all the points, so you only need to loop through points
and determine if the current point is within the current boundary. Listing 7-14 uses the cur-
rent boundary of the map from map.getBounds()

Client-Side Closest to a Common Point Method

As with the boundary method, the client-side closest to a common point method is similar

to the server-side closest to common point method, but you can use the Google Maps API to
accomplish the same goal on the client side if you don0t have too many points. With a known
latitude and longitude point, you can calculate the distance from the known point to any other
point using the distanceFrom() method of the GLatLngclass as follows:

var here = new GLatLng(lat,Ing);
var distanceFromThereToHere = here.distanceFrom(there);

The distanceFrom() method returns the distance between the two points in meters, but
remember that the Google Maps APl assumes the earth is a sphere, even though the earth is
slightly elliptical, so the accuracy of the distance may be off by as much as 0.3%, depending
where the two points are on the globe.

In Listing 7-15 (http://googlemapsbook.com/chapter7/ClientClosest/), you can see the
client-side JavaScript is very similar to the server-side PHP in Listing 7-5. The main difference
(besides not sending a request to the server) is the use of point.distanceFrom() rather than

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA S8TS

the surfaceDistance() PHP function. Also for the example, the boundary of the data is out-
lined using the Rectangle object, similar to the one discussed earlier.

Listing 7-15. JavaScript for the Client-Side Closest to Common Point Method

var map;

var centerLatitude = 41.8;
var centerLongitude = -72.3;
var startZoom = 8;

function init() {
map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

/Ipass in an initial point for the center
updateMarkers(new GLatLng(centerLatitude, centerLongitude));

GEvent.addListener(map,'click’,function(overlay,point) {
/Ipass in the point for the center
updateMarkers(point);

D
}

function updateMarkers(relativeTo) {

/Iremove the existing points
map.clearOverlays();

/Imark the outer boundary of the data from the points object

var allsw = new GLatLng(41.57025176609894, -73.39965820312499);
var allne = new GLatLng(42.589488572714245, -71.751708984375);
var allmapBounds = new GLatLngBounds(allsw,allne);
map.addOverlay(new Rectangle(allmapBounds,4,"#F00"));

var distanceList = [];

var p =0;

/Nloop through points and get the distance to each point

for (k in points) {
distanceList[p] = {};
distanceList[p].glating = new GLatLng(points[k].lat,points[k].Ing);
distanceList[p].distance = distanceList[p].glatlng.distanceFrom(relativeTo);
p++;

}

//sort based on the distance
distanceList.sort(function (a,b) {

190 CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SETS

if(a.distance > b.distance) return 1
if(a.distance < b.distance) return -1
return O

b

/lcreate the first 50 markers

for (i=0 ; i<50 ; i++) {
var marker = createMarker(distanceList[i].glating);
map.addOverlay(marker);
if(++i > 50) break;

}

function createMarker(point) {
var marker = new GMarker(point);
return marker;

}

window.onload = init;

/*
* Rectangle overlay for testing to mark boundaries
*
/
function Rectangle(bounds, opt_weight, opt_color) {
this.bounds_ = bounds; this.weight_ = opt_weight || 1;
this.color_ = opt_color || "#888888";

}
Rectangle.prototype = new GOverlay();

Rectangle.prototype.initialize = function(map) {
var div = document.createElement("div");
div.innerHTML = 'Click inside area";
div.style.border = this.weight_ + "px solid " + this.color_;
div.style.position = "absolute";
map.getPane(G_MAP_MAP_PANE).appendChild(div);
this.map_ = map;
this.div_ = div;
}
Rectangle.prototype.remove = function() {
this.div_.parentNode.removeChild(this.div_);
}
Rectangle.prototype.copy = function() {
return new Rectangle(
this.bounds_,
this.weight_,
this.color_,
this.backgroundColor_,

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA BHTS

this.opacity_

);
}
Rectangle.prototype.redraw = function(force) {

if (Iforce) return;

var c1 = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());

var c2 = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());

this.div_.style.width = Math.abs(c2.x - c1.x) + "px";

this.div_.style.height = Math.abs(c2.y - cl.y) + "px";

this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight_) + "px";

this.div_.style.top = (Math.min(c2.y, cl.y) - this.weight_) + "px";

Client-Side Clustering

If your data is dense, you may still want to cluster points when there are overlapping points in
proximity. As with the server-side clustering method, there are a variety of ways you can calcu late
which points to group. In Listing 7-16 (http://googlemapsbook.com/chapter7/ClientClus ter/), we
use a grid method similar to the one we used with the server-side clustering example. The bi ggest dif-
ference here is your grid cells will be larger and not as fine-grained, so you dont slow down the
JavaScript on slower computers. If you modify the grid cells over several loops, the browser
may assume that the script is taking too long and display a warning, as shown in Figure 7-10.

Warning: Unresponsive script

A script on this page may be busy, or it may have
stopped responding. You can stop the script now, or you
can continue to see if the script will complete.

If_\' Continue) [Stop script)

Figure 7-10.A JavaScript warning in Firefox indicating the script is taking too long to execute

Listing 7-16.JavaScript for Client-Side Clustering

var map;
var centerLatitude = 42;
var centerLongitude = -72;
var startZoom = 8;

/lcreate an icon for the clusters

var iconCluster = new Glcon();

iconCluster.image = "http://googlemapsbook.com/chapter7/icons/cluster.png”;
iconCluster.shadow = "http://googlemapsbook.com/chapter7/icons/cluster_shadow.png";
iconCluster.iconSize = new GSize(26, 25);

iconCluster.shadowSize = new GSize(22, 20);

iconCluster.iconAnchor = new GPoint(13, 25);

iconCluster.infoWindowAnchor = new GPoint(13, 1);

iconCluster.infoShadowAnchor = new GPoint(26, 13);

/lcreate an icon for the pins

var iconSingle = new Glcon();

iconSingle.image = "http://googlemapsbook.com/chapter7/icons/single.png";
iconSingle.shadow = "http://googlemapsbook.com/chapter7/icons/single_shadow.png";
iconSingle.iconSize = new GSize(12, 20);

iconSingle.shadowSize = new GSize(22, 20);

iconSingle.iconAnchor = new GPoint(6, 20);

iconSingle.infoWindowAnchor = new GPoint(6, 1);

iconSingle.infoShadowAnchor = new GPoint(13, 13);

function init() {
map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {
updateMarkers();

b

GEvent.addListener(map, moveend',function() {
updateMarkers();

b
}

function updateMarkers() {

/Iremove the existing points
map.clearOverlays();

/Imark the boundary of the data
var allsw = new GLatLng(41.57025176609894, -73.39965820312499);
var allne = new GLatLng(42.589488572714245, -71.751708984375);
var allmapBounds = new GLatLngBounds(allsw,allne);
map.addOverlay(
new Rectangle(

allmapBounds,

4,

'#F00',

'Data Bounds, Zoom in for detail.'

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA 8BTS

//get the bounds of the viewable area

var mapBounds = map.getBounds();

var sw = mapBounds.getSouthWest();

var ne = mapBounds.getNorthEast();

var size = mapBounds.toSpan(); //returns GLatLng

/Imake a grid that's 10x10 in the viewable area
var gridSize = 10;

var gridCellSizeLat = size.lat()/gridSize;

var gridCellSizeLng = size.Ing()/gridSize;

var gridCells = [];

/lloop through the points and assign each one to a grid cell
for (k in points) {
var lating = new GLatLng(points[k].lat,points[k].Ing);

/lcheck if it is in the viewable area,
//it may not be when zoomed in close
if(lmapBounds.contains(lating)) continue;

/ffind grid cell it is in:

var testBounds = new GLatLngBounds(sw,lating);
var testSize = testBounds.toSpan();

var i = Math.ceil(testSize.lat()/gridCellSizeLat);
var j = Math.ceil(testSize.Ing()/gridCellSizeLng);
var cell = i+j;

if(typeof gridCells[cell] == 'undefined') {
//add it to the grid cell array
var cellSW = new GLatLng(
sw.lat()+((i-1)*gridCellSizeLat),
sw.Ing()+((j-1)*gridCellSizeLng)
)i
var cellNE = new GLatLng(
cellsW.lat()+gridCellSizeLat,
cellSW.Ing()+gridCellSizeLng
)i
gridCells[cell] ={
GLatLngBounds : new GLatLngBounds(cellSW,cellNE),
cluster : false,
markers:[],
length:0
h

/Imark cell for testing

194 CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SETS

map.addOverlay(
new Rectangle(
gridCells[cell].GLatLngBounds,
1,
'#OO0F',
'Grid Cell'

}

gridCells[cell].length++;

/lalready in cluster mode
if(gridCells[cell].cluster) continue;

/lonly cluster if it has more than 2 points

if(gridCells[cell].markers.length==3) {
gridCells[cell].markers=null;
gridCells[cell].cluster=true;

}else {
gridCells[cell].markers.push(lating);

}

}

for (k in gridCells) {
if(gridCells[k].cluster == true) {

llcreate a cluster marker in the center of the grid cell

var span = gridCells[k].GLatLngBounds.toSpan();

var sw = gridCells[k].GLatLngBounds.getSouthWest();

var marker = createMarker(
new GLatLng(sw.lat()+(span.lat()/2),
sw.Ing()+(span.Iing()/2))

,'C
)i
map.addOverlay(marker);
}else {

//create the single markers

for(i in gridCells[k].markers) {
var marker = createMarker(gridCells[k].markers[i],'p");
map.addOverlay(marker);

}

function createMarker(point, type) {

}

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA S¥TS

/[create the marker with the appropriate icon
if(type=="c’) {

var marker = new GMarker(point,iconCluster,true);
}else {

var marker = new GMarker(point,iconSingle,true);

}

return marker;

window.onload = init;

/*

* Rectangle overlay for development only to mark boundaries for testing...

*/

function Rectangle(bounds, opt_weight, opt_color, opt_html) {

}

this.bounds_ = bounds; this.weight_ = opt_weight || 1;
this.html_ = opt_html || "; this.color_ = opt_color || "#888888";

Rectangle.prototype = new GOverlay();

Rectangle.prototype.initialize = function(map) {

}

var div = document.createElement("div");
div.innerHTML = this.html_;

div.style.border = this.weight_ + "px solid " + this.color_;
div.style.position = "absolute";
map.getPane(G_MAP_MAP_PANE).appendChild(div);
this.map_ = map;

this.div_ = div;

Rectangle.prototype.remove = function() {

}

this.div_.parentNode.removeChild(this.div_);

Rectangle.prototype.copy = function() {

}

return new Rectangle(
this.bounds_,
this.weight_,
this.color_,
this.backgroundColor_,
this.opacity_

);

Rectangle.prototype.redraw = function(force) {

if (Iforce) return;

var c1 = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());
var c2 = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());
this.div_.style.width = Math.abs(c2.x - c1.x) + "px";

this.div_.style.height = Math.abs(c2.y - cl.y) + "px";

196

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SETS

this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight_) + "px";
this.div_.style.top = (Math.min(c2.y, cl.y) - this.weight_) + "px";
}

Further Optimizations

Once you have your server and JavaScript optimized for your data set, you may also want to
consider some additional niceties.

Removing Load Flashing

With the examples weQve presented so far, you may have noticed that your maps OflashO
between redraws and requests. This occurs because the JavaScript removes all the points and
then draws them all again. If you don®t move the map a considerable distance, some points
that are removed are then immediately replaced again. To avoid this, you can create a second-
ary JavaScript object to OrememberO which points are currently on the map and remove only
those that arenCt in the new list. Using the same object, you can also add only those that arenOt
in the old list. Listing 7-17 (http://googlemapsbook.com/chapter7/TrackingPoints/) shows
the client-side boundary method from Listing 7-14 modified to keep track of points to remove
the flashing between redraws.

Listing 7-17.Modified Client-Side Boundary JavaScript That Remembers Which Markers Are on
the Map

var map;

var centerLatitude = 49.224773;
var centerLongitude = -122.991943;
var startZoom = 4;

var existingMarkers = {};

function init() {
map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {

updateMarkers();
»;
GEvent.addListener(map,'moveend',function() {
updateMarkers();
»;

}

function updateMarkers() {
/ldon't remove all the overlays!

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA BHTS

/Imap.clearOverlays();
var mapBounds = map.getBounds();

/Nloop through each of the points in memory and remove those that
[/laren't going to be shown
for(k in existingMarkers) {
if(lmapBounds.contains(existingMarkers[k].getPoint())) {
map.removeOverlay(existingMarkers|Kk]);
delete existingMarkers|K];

}

/Nloop through each of the points from the global points object
/land create markers that don't exist
for (k in points) {

var lating = new GLatLng(points[k].lat,points[k].Ing);

I/skip it if the marker already exists

/lor is not in the viewable area

if(lexistingMarkers[k] && mapBounds.contains(lating)) {
existingMarkers[k] = createMarker(lating);
map.addOverlay(existingMarkers[k]);

}

function createMarker(point) {
var marker = new GMarker(point);
return marker;

}

window.onload = init;

You can apply the same fix for both server-side and client-side optimizations where the
JavaScript is responsible for creating the markers.

Planning for the Next Move

If you want to be really nice and provide the ultimate user experience, you can put a little
intelligence into your map and have it anticipate what the users are going to do next. From
watching map users in test groups, itOs our experience that most users OdragO the map in very
small increments as they move around. The dragging movement of the map generally reveals
only another 25% to 50% of that map in the direction opposite the drag.

Though you may assume your users will grab the map and drag around in large sweeping
motions (which they still could), smaller motions offer you an advantage. You can keep track of
each movement and anticipate that the next movement will take the map in generally the same
direction. If you know where the users are going to go, you can request the new points for that
direction and have them alr eady waiting before they get there.

198

CHAPTER 7 OPTIMIZING AND SCALING FOR LARGE DATA SETS

Additionally, you could also extend the requested bounds beyond the edge of the viewport to
include what®s just outside the edge. By extending the boundary a bit outside the viewport, your
users would think the map is loading faster, as markers are appearing quickly around the edge.

Summary

In this chapter, weQve presented a few optimization methods, for both your server and the
browser, that allow your web application to run smoothly. By combining methods such as
clustering and closest to point searches, you can further improve and create new optimization
methods that will present your data in easy-to-understand and creative ways.

While working on your projects, be sure to choose the best method for the task at hand
and don®t base your decision oncoolnessalone. Creating your own tiles, as in the custom tile
method described in this chapter, is pretty neat, but doesnOt serve well for data that is gener-
ated from filtered searches, since each tile will always be different. Also, when using a feature
like clustering, make sure that your icons and user interface indicate this to the user.

Once you have your web application working, be sure to go over it again and look for places
that could benefit from further optimization. Check again for areas where you could reduce
the amount of data transferred between the client and the server, or check places where youOre
looping through large amounts of data and see if you can reduce it further. Just because your web
application works doesnOt mean itOs working as well as it could. The better optimized your map,
the happier your users will be and the better experience theyOll have.

At the same time youQre improving your web application and optimizing it to the best of
your ability, Google will continue to develop its Maps API, adding improvements and new
features. In the next chapter, youOll see some of the possible things Googlemay add, but no
guarantees!

CHAPTER 8

WhatOs Next for the Google
Maps API?

A this book goes to press, the Google Maps APl is still very much in development; its feature
set continues to change and improve. As the API increases in popularity and new methods are
added, itOs often necessary to alter the way things work to enable new capabilities or provide
more consistency throughout the APl as a whole. Version 2, for example, split the GPoint class
into separate GPointand GLatLngclasses, each with enhanced capabilities corresponding to
their respective roles in handling pixel coordinates and geographical locations. In reversing
the zoom levels, which may have been an annoyance to developers, Google allowed the maps
to support as many detail levels as the satellite photography (or your custom overlay) warrants.
So far, weOve shown you a lot of really neat techniques and tricks for getting data into your
application and onto a map. In the following chapters, wedll expand on that and show you
some powerful tools for making complex projects. But before we dive deeper into the API,
we want to mention a few things you may want to keep a lookout for as the API continues to
mature. None of these things are guarantees, but theyOre likely possibilities, given the demand
and interest in them. As developers like yourself push the API further, the demand for new
capabilitiesNsuch as the free geocoderNbecomes louder, and when Google consents, we get
more toys and more fun.

Driving Directions

If you follow the Google Maps discussion group at http://groups.google.com/group/
Google-Maps-APJ which we highly recommend you do, youOll notice a growing interest in the
routing system built into http://maps.google.com , as shown in Figure 8-1.

199

200 CHAPTER 8 WHATOS NEXT FOR THE GOOGLE MAPS API?

afn from: Tarante Canada to: New Yark City - Coogle Maps

e i

Sk ‘E?. ’!\ Gl hip:) fmaps googie com) 4 £

Web |mages Groups News Froogis Maps more s

0I nge [Taronto Canada] £ Pew vork Ciry et Directions |

Eind f

Maps
Slarl addregs; Toronto, ON
Canada

¢ Hammard
BICIS, o Hs,rg.am—;;lu |
Y

B

Kouh Fine
7
Erel adcirman: | Mew Yok, WY @ @ = ,.J umsbu'g Tepsham - |
R o ot = Lnzoin
786 km (ebout 3 houres 45 mirs) i ingrsald canmen. LenaLakel e Print W Fool |
% | {Thomicei: Tar
ians Ellisturg o I ! Chebenden |
1. Head west from St Leonards Ave - Ea COscanla Trirmen “Wishall DY Lacata
g0 0.3 km Vuiney At Gomish
2 Tum left 2t Mt Plsasant Rd - go 6.1 km [Bt el @ senna Ph gl Landansery Hampshi
= b
3 Bar laf 31 Jarvis St - oo 24 km g 5 S LT e || Vieare
i [e I :
4. | Gontinue on Lower Jarvis St - go 0.4 km Mew York Mides e Greerfe
: T s Gomny e o) o Dianartirg seraiftesks gtamm |
§ | Tum right into the HVY-2 W sniry mmp - b e NI ol LR o
o 9.4 km et . : i,
& ?:-Nmmemmmlm Expy W - o 6.7 lm Gora 08 B ot iyden T c:::n T e
s 4 M
2 B evel L LU e s, S B Fraindn pArashingpon: Eeicharman =
2| Cortirus on GEW - go 17 kom LTl Atmgany o Rolesvite Shiaidake Lhengatin it Gy e o, e
p— - R i & _Traupshi Ewrera . Tioga” o Yo . =y
& | Continus on HWWY-403 W -go 21 km b BEEAED Crvion i 0PRSS o = Hancork S STy T
Al ! Hecr Fremai e
8| Contirue on QEW loward Nisgara/Fort Erie - Bpiirg, Drariedd Moad Libigty Daimar Frankhnsubum el oS (WWawarsng b
9 6 km L compimer Sl Shipen Dveran 1 7 Bnstnly L skanen 7
1 v Forkston) Y
3.-. e Fox | Gidver McHenry L W (i)’ Connechicut. 7"
10| Take the HWY-ADS et 37 to Quoeratar: - Crarbery Fok Fox Davetsan muss A =Tl
Lol P il D sy Beech Creek i w2 i -
11 Mere into HWY 405 E - go B.3 km P st
12 | Contirue on Qusenston-Lewlston Brg - Fany Fe " Pennsylvania Pl
26 km ten
ge D} (Y Cavar | Thony' Jbckson Duute Hogra
13 | Taka tho 1280 E axil 16 b Tonawanda T Pitnbiegh duhde SELbaRegrany, |, Seie Bonal brs
(1-80) Rachester - go 16 km FEA e Tase ioad. e g
14 Take the |60 £ axit 1-49 to Albany - | SEEFy ey S Bl]
0 240 km i Dt il e migia 7 %8) B8 el MRS i
= rarklin i
on T e Eacialey "
16| Taka the 1680 axit 38 1o Syracuse/Fulion - e e Soulhampian - e B T Y
9o 1.5 km f Z - i New it]
; agrave L
, i lersey 40-1
e L e ¥ LS o
7 | Baar et nndry Th 130 B e — s 908 e | (7 | 1 1000 S [T i romg AR BEODE NAVTEG =+ Lo s -

Figure 8-1.Google Maps with a route from Toronto to New York

Similar to the recently released geocoding service, Google could add an additional class
that would allow you to retrieve the route information between arbitrary points on your map.
This seems even more likely now that Google is also offering an Enterprise edition of the Maps
API (http://www.google.com/enterprise/maps/) for use in closed, corporate environments.
Franchises and large chains of stores or restaurants could benefit from the inclusion of routing
features to service their customers and delivery personnel.

Routing is an interesting can of worms, since it begins to expose more of GoogleQs internal
road database. But road information is not a secret, of course; if you want it, you can get it
from freely available sources such as the US Census Bureau®s TIGER/Line files, as you will see
in Chapter 11. The concern would be more with the immense computational power necessary
to serve up complicated road queries in high volume, particularly to amateur API developers,
who may not understand throttling or caching.

Integrated Google Services

As youOve seen in Chapter 4, searching manually for data to plot and geocoding all the infor-
mation yourself can be time-consuming and costly. However, vast stores of information are
already available, hidden away in GoogleQs search and service databases.

CHAPTER 8 WHATOS NEXT FOR THE GOOGLE MAPS20RI?

Google already offers its own business listing map web application at http://maps.
google.com where you can search for businesses based on their geographical location, as

shown in Figure 8-2.

ana

Maw Yark Book Stares - Google Maps (=]

= = /2‘ Gl htto: { pmaps.gacgie.com/

Weh Images Gmups News Froocla Maps mores

GOl)Sle Wew York Back Stores

Sgarch the map
Maps
Did you mean: BookStores

Spassorid Lirka
Bames & Nobla Bockstora
Buy Books. Texibooks, CDg, OVDe
and Videos at Bames & MNobla.com
www. Bamas andMoble, com

Rasuts | 10 of abml N,Mﬂ ior Book Stores naar

Dal.eg«—ea Book | Qann B@LIL Booke

Bames & Noble Booksaliars:
Superstares

33 E 170h Bt New York, NY

LB mi NE - [212) 253-0810

Strand Book Stare
azn Bmanway. Mew York, NY
1.6 mi NE - [212) 473.1452

Mew York Universi: ! _Carnuu ar Slore
44 aih 1, Now vork. N
-[212y 99046??

New York University
01 Wazhinglon Sg & # 1216, New York. NY
1.2 mi ME - [212) 4730078

P iouzmace
|28Cr:\eby 88, New York, NY
016 mi NE - (212} 334-3024

Banks & Music
Nanrk NY
£ [1‘2!9&‘—19%

FAQ Schwarz Ing
TH7 tth Avs # 401, Mow York, NY
9.8 mi NE - (212) 644-8400

@ Bames & Noble Booksellers:

Ciirarataras

Saarch Maps
Eind bisnesses Gel deeciions
5 Print 07 Email == Lk 10 this giege
N O I e e]
m R £ Sl Wy A ‘g J f A e i 23
] = Sanng JRE g 2 5
) Anserene 2
i
R, S ko)
. B £
G T e = :
vy T A S
Caviusaey Corky el

etk ;
it 3 r o €
pLTE \ X Vi
b iy ety % b o
5 - State Park. i i)
Ly 19 4
5 L
-_‘D & g L7 Jue iy e B
SR S
3 F i S It inaliiie A
b y 3 i
A Tl i
e w !
¥ E
B § = 3
'y '|1-u S =) g
(AL, I g3 A G005 Gogte yap Sala 82008 NAUTEC™ - T)L

Figure 8-2.Google Maps search for ONew York Book StoresO

If Google chose to integrate its search database into the Google Maps API, GoogleOs
servers could provide you with ready-to-use mapping information based on search terms.

This would relieve you of some parsing and geocoding tasks, and eliminate the burden of col-
lecting the information for your web application.

Imagine creating a map of bookstores in New York by asking the API for Obookstores in
New York.O The possibility of supplementing your mapQOs proprietary data with GoogleOs public
data is certainly an intriguing one. As the owner of a chain of bookstores, you could not only
help your customers locate your stores, but you could also offer added value by throwing up
the results of a OCoffee shops within one mile of StoreLatLngO query.

Tip Though not built into the Google Maps API, using GoogleOs search database is actually possible no
by combining some additional Google APIs such as the Google AJAX Search API and maps. For an exam
check out the My Favorite Places plattye/atww.google.com/uds/samples/places.html , where
you can type in a request such as ONew York BookstoresO and get mapping information.

202

CHAPTER 8 WHATOS NEXT FOR THE GOOGLE MAPS API?

KML Data

As you saw in Chapter 1, the http://maps.google.com site lets you plot any arbitrary KML data
directly on your map. In that chapter, we showed you a quick sample file that marked three
popular destinations in downtown Toronto. Figure 8-3 shows a similar file, which drops an
arbitrary point onto southeastern Ontario.

ana : htp: | goog ffeads | axamele km - Coagle Maps =
@5 &08F P r—— o '

Weh Imoges Grogps Nows Frogla Maps mora s

GOL)S [e ttp:f/googlemapsbook.com /feeds fexample kml Search Maps
Maps | Saars the s [Firi kdsss

Maps B ednt B Email ® Link o this page

Displaying content from coog
Vigw on Googla Earth

Example Point 1
8 This paini is from the akampla feed

Figure 8-3.Sample KML file in a map

At the moment, using KML data is possible only with Google Maps itself, not directly from
the API. But it certainly appears that Google has reason to expand interest in the KML data
format. We expect future versions of the API to provide shortcut functions for loading and
parsing this kind of information. You can do it yourself, of course, but to automate it would
help bridge the gap between users of Google Maps and users of the Maps API.

More Data Layers

The satellite imagery included in the API has opened the whole world to people who may
never even travel out of their hometown. With a simple click and drag of the mouse, sites such
as http://googlesightseeing.com (Figure 8-4) can take you anywhere on the planet, and in
many cases, give you a close enough look to make out cars and people.

CHAPTER 8 WHATOS NEXT FOR THE GOOGLE MAPS20BI?

066 Coogle Sightseeing (=]

<::|. @ ﬁ = hup:/ jgooglesightseeing.com/ By ©IG

G _0 OGLE SIGHTSE EINGr sy sorHer sEEiNG THEWakLD FR REAL?

ST | LOCALITY | CATEGORY | MAR | GOOGLESIBHTSEEING.COM |5 NOT SPONSORED BY DR AFFILIATED WITH GOOGLE

1
Ads by Google Model Rallway Halroad Sim N Scale G Gauge || Sgarchl
|

| Google Sightseeing is brought te you

2. s ¥ s / \ by Alex, James & Olly, who take you
Medicine Hat's Saamis Teepee / e $0-this WaHcs Bast APt Enate

:) ’ AR using the frealy dewrlnadable
Here in Medicine Hat, Canada, you couldn't possibly miss the Saamis Teepee. Google Earth or Gooale Maps inyour

Designed for the 1088 Winter Olympics in Calgary and moved here in 1091, it web browser.
stands over 65 metres high - making Medicine Hat the proud owner ofthe

world's tallest teepee, SUGGEST A SIGHT
You just couldn’t make this stuff up could you? CONTACT US

FAQS
PRESS

ONE YEAR AGO TODAY...

| FEEDS 8
3 LATEST POSTS

Thanks to Allison.

& 12th Jul 2006 by Alex 2} Comments (3) ¥ View in Google Earth
Calag: &, Slucl , Albarta gnd M 1

EJ COMMENTS
& GOOGLE EARTH

Molecule Man and Hammering Man

NETWORK
Apparently floating on te river Spree in Barlin, the massive Molecuie Man casts

a striking shadow which leaves you in nb doubt what it's a sculpture of. Howevar o 7 RULES
from ground level you raally see how well the Blusion is realised. @D COOGLE MARS MANIA

(® GOOGLE EARTH BLOG

Ads by Goooovogle

Model Train Secrets

Save Time And Money,
Avoid Rookie Mistakes!
100's Of Tips Revealed

madaltmins.solemonwebsitas.ca

Molecule Man was designed by an American artst Jonathan Borolsky, who is
bertter known for ancther of his works, Hammering Man. Seen here outside the
Seattle Art Museum, Hammering Man is actually a series of sculptures installed
in various cities throughout the worid, and sometimes (as in Seattle] he's

Model RR, Tralns &
Better prices, more 4

Figure 8-4.The Google Sightseeing home page

So if Google can offer two layers of data (satellite and map), then why shouldnOt we expect
that it will begin to offer other complementary layers? The data for things like elevation,
weather trends, and population density are all available, and would make excellent layers in
the system. While this may tread on some of the maps we are building, it could also open up
new opportunities, just as the satellite imagery did for sightseeing.

Also, Google Earth, GoogleOs desktop mapping software, already allows you to incorporate
Google SketchUp objects, so why not make these objects available to the Google Maps API, too?

204 CHAPTER 8 WHATOS NEXT FOR THE GOOGLE MAPS API?

Beyond the Enterprise

In building new relationships with enterprise providers, Google is edging into the corporate
mapping space previously dominated by desktop products such as Microsoft MapPoint. When
enterprise clients begin to require even greater performance and feature diversity, Google may
provide a Google Maps Mini appliance similar to the Google Mini search appliance offered
today (http://www.google.com/enterprise/mini/). A Mini appliance would provide the corpo-
rate world with a Omap-in-a-boxO solution that could be highly customized and branded to
offer features that support the needs of specific companies and markets.

Those of us using the free mapping APl may also one day see integrated advertisements
in our maps. The terms of service have always provided for the eventuality of Google adding
things to make money from your map. Paying enterprise customers would certainly be exempt
from any integrated advertising, which would offer the rest of us a compelling reasonto upgrade
to the enterprise subscription.

Note The API key signup page explicitly states that Google will give developers 90 days notice via the
official Google Maps API bttgy/{googlemapsapi.blogspot.com) before introducing advertising into
third-party sites such as those youOre building. If the prospect of advertising bothers you, we suggest that
you follow this blog closely.

Interface Improvements

The current Google Maps interface is built entirely using XHTML, CSS, and JavaScript. It works
extremely well, but is limited by the browserOs ability to quickly scale images or move around
large numbers of on-screen objects. Other mapping tools such as the Yahoo Mapping API
offer alternative Flash clients that can benefit from the performance optimizations of that sys-
tem. Though Google doesnlt offer a Flash-based API, others have attempted to incorporate the
Google Maps API with Flash and created unique, highly interactive, and rich web applications.
Figure 8-5 shows one example: the X-Men map at http://xplanet.net

CHAPTER 8 WHATOS NEXT FOR THE GOOGLE MAPS20BI?

easn htrp://xplanet net - X-Planet : X-Men - The Last Stand (==]

savDE LsT awm e SEND 10 M PEIEND tomm

[tiort]

HID MUTANTS 1N THIS AREA

EVENTS EAN SOUADS WHOSE SIDE WiLL WOULD YOU TAKE
" YouU EE On 7 "THE CURE" 7

Figure 8-5.The X-Men Flash-based Google map

With the growing competition from Yahoo! Maps and Windows Live Local, Google may
come to offer additional options such as a Flash API, or even a next-generation one based on
Scalable Vector Graphics (SVG) or some other technology that can bring the browser experi-
ence closer to that of Google Earth.

Summary

In this chapter, we speculated about what might be coming up in the Google API. Along with
the new services, we can expect better tools. As with any web application, Google will be con-
tinually improving on the existing components of the Maps API. Tools like the newly released
geocoder will eventually expand to cover more countries and improve accuracy as more
detailed information becomes available. Satellite imagery will increase in detail and will be
updated continually with more and more recent images.

Now we are ready to move on to some more advancing mapping techniques. In the next
part of the book, weQll cover a wide variety of complementary concepts for your mapping proj-
ects. Chapter 9 demonstrates how to make your own info windows and tool tips, as well as
other overlay-related tricks. In Chapter 10, weQll cover some mathematics you may need in
a professional map. Finally, in Chapter 11, weOll show you how to build your own geocoder
from scratch, using a raw data set.

1. X-Men and XPlanet.net copyright Marvel, Fox and their related entities.

PART 3

Advanced Map Featu
and Methods

CHAPTER 9

Advanced Tips and Tricks

Byond what youOve seen so far, the Google Maps API has a number of features that are often
overlooked. Here, youOll go through a variety of examples to learn how to use some of the more
advanced features of the API, such as the ability to change map tiles and the possibility of cre ating

your own overlay objects.
In this chapter, the examples demonstrate how to do the following:

¥ Create an overlay for markers that acts as atool tip.
¥ Promote yourself with a custom icon control.

¥ Add tabs to info windows.

¥ Construct your own info window.

¥ Create your own map tiles using the NASA Blue Marble images.

Debugging Maps

Before diving into the examples, letOs take a quick look at debugging within the Google Maps API.
With the Google Maps API version 1, the debuggerOs best friend wasilert() . But as they say, OOnly
a Lert uses alert to debug,0 and if youOve ever accidentally OalertedO something in a loop, you know
what they mean! With Google Maps API version 2, you now have access to the wonderfully simple,
yet wonderfully useful, GLoglass. Now GLog.write() is the OnewQilert() , but it creates a floating
log window, as shown in Figure 9-1, to hold all your debugging messages.

Figure 9-1.Empty GLog window

209

210 CHAPTER 9 ADVANCED TIPS AND TRICKS

For example, if youOre curious about what methods and properties a JavaScript object has,
such as the GMapabject, try this:

var map = new GMap2(document.getElementByld("map"));
for(i in map) { GLog.write(i); }

Voil"! The GLogwindow in Figure 9-2 now contains a scrolling list of all the methods and
properties belonging to your GMapabiject, and you didnOt need to click OK in dozens of alert
windows to get to it.

13:33:43:235
getInfoWindow

13:33:43: 544

closeInfoWindow

13:33:43: 364

enablelnfoWindow

13:37:43: 942 m
disableInfoWindow

13:33:4%: 00D
infoWindowEnabled b 1

Figure 9-2.GLog window listing methods and properties of the GMap2 object

The GLog.write() method escapes any HTML and logs it to the window as source code. If
you want to output formatted HTML, you can use the GLog.writeHtmlI() method. Similarly, to out-
put a clickable link, just pass a URL into the GLog.writeUrl() method. The writeUrl() method
is especially useful when creating your own map tiles, as youOll see in the Olmplementing Your
Own Map Type, Tiles, and ProjectionO section later in the chapter, where you can simply log the
URL and click the link to go directly to an image for testing.

Tip GLogsnOt bound to just map objects; it can be used throughout your web application to debug any
JavaScript code you want. As long as the Google Maps API is included in your p&jepgolneln use
debug anything from Ajax requests to mouse events.

Interacting with the Map from the API

When building your web applications using Google Maps, youOll probably have more in your
application than just the map. WhatOs outside the map will vary depending on the purpose of
your project and could include anything from graphical eye candy to interactive form ele ments.
When these external elements interact with the map, especially when using the mouse, you may
often find yourself struggling to locate the pixel position of the various map objects on your scr een.
You may also run into situations where you need to trigger events, even mouse-related events,
without the cursor ever touching the element. In these situations, a few classes and methods
may come in handy.

CHAPTER 9 ADVANCED TIPS AND TRICK@11

Helping You Find Your Place

More and more, your web applications will be interacting with users in detailed and intricate ~ ways.
Gone are the days of simple requests and responses, where the cursor was merely used to navugate
from box to box on a single form. Today, your web application may rely on drag-and-drop, sliders,
and other mouse movements to create a more desktop-like environment. To help you keep track
of the position of objects on the map and on the screen, Google has provided coordinate
transformation methods that allow you to convert a longitude and latitude into X and Y screen
coordinates and vice versa.

To find the pixel coordinates of a location on the map relative to the mapOs div container,
you can use the GMap2.fromLatLngToDivPixel() method. By converting the latitude and longi tude
into a pixel location, you can then use the pixel location to help position other elements of your
web application relative to the map objects. Take a quick look at Listing 9-1, where the mousenove
event is used to log the pixel location of the cursor on the map.

Listing 9-1. Tracking the Mouse on the Map

var map;
var centerLatitude = 43.49462;
var centerLongitude = -80.548239;
var startZoom = 3;

function init() {

map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());

map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

GEvent.addListener(map,'mousemove',function(lating) {
var pixelLocation = map.fromLatLngToDivPixel(lating);
GLog.write('ll:" + lating + ' at:' + pixelLocation);

D

}

window.onload = init;

Moving around the map, the GLogvindow reveals the latitude and longitude location of the
cursor, along with the pixel location relative to the top-left corner of the map div, as shown in
Figure 9-3.

212 CHAPTER 9 ADVANCED TIPS AND TRICKS

| AB MB- -
o | SK e ML
. aN. W Sactd Yo g
A : K
e - |
p WA . MT MD MN T
o ¢ o] | sp_| ~wiy
H ""'J"_"l wi NE \.I.I 1A _',"',i | .
1 1 % ¥
| NV —— ==L IL{IN[OH,
Ut co [KS IMOL £- ” 4
CA =S R e o
JAZINM | D _’B‘P‘r;_’ﬂsi | \SCuEDEMD
T £ 5 R -.AL'-GA.
e ¥ o e B W o
LN LA T - -
POURRERET p EE"‘”.F-’: I1:(44.33956524809713, -82.6171875) at:(240, 145)
GOL‘S.IE Mexico MEXICONN, - T ' : '
I1:{43.197167268250127, -78.92578125) at:(261, 154
13:47: 02326

II:{43.19716728250127, -78.92578125) at:(261, 154

13:47: 0%:477 m
I1:(43.19716728250127, -B0.15625) at:(254, 154)

13:47:0%: 365 4
I1:(43.19716728250127, -80.33203125) at:(253, 154 ¥

Figure 9-3.Tracking the mouse movement relative to the map container

Once you have the pixel location from GMap2.fromLatLngToDivPixel(), you can turn it into
a location relative to the screen or window by applying additional calculations appropriate to
the design and layout of your web application.

Tip For more information about JavaScript and using it to interact with your webpag&gqipking:
Web Design with JavaScript and the Document Objbgt Moetal, Keitiitp://mww.friend sofed.com/
book.htmlI?isbn=1590595334. It covers everything you need to know when using JavaScript to add
dynamic enhancements to web pages and program Ajax-style applications.

Force Triggering Events with GEvent

The GEvenbbject, introduced in Chapter 3, lets you run code when specific events are triggered
on particular objects. You can attach events to markers, the map, DOM objects, info windows,
overlays, and any other object on your map. In earlier chapters, youOve used theclick event to
create markers and the zoomene@vent to load data from the server. These work great if your users
are interacting with the map, but what happens if theyOre interacting with some other part of the
web application and you want those objects to trigger these events? In those cases, you can use
the trigger() method of the GEventfclass to force the event to run.

For example, suppose you create an event that runs when the zoom level is changed on
your map using the zoomenevent, and itOs logged to theGLogvindow:

CHAPTER 9 ADVANCED TIPS AND TRICK@13

GEvent.addListener(map,'zoomend',function(oldLevel, newLevel) {
/lsome other code
GLog.write('Zoom changed from ' + oldLevel + 'to ' + newLevel);

b

If you adjust the zoom level of your map, youOll get a log entry that looks something like
Figure 9-4.

13:5% b a
Zoom changed from 3 to 4

Figure 9-4.GLog entry after changing zoom levels using the zoom control

Notice in Figure 9-4 how the old and new zoom levels are specified. From elsewhere in your
web application, you can force the zoomenevent to execute by calling
GEvent.trigger(map,'’zoomend");

Executing this method will cause the zoomenevent to run as normal. The problem is that
youOll getundefined values for both oldLevel and newlLevel as shown in Figure 9-5.

14:03: 12: 327
Zoom changed from undefined to undefined

Figure 9-5.GLog entries after triggering zoomend using GEvent.trigger(map,' zoomend')

The same applies for any event that passes arguments into its trigger function. If the API
can0t determine what to pass, youOll get anndefined value.

To overcome this problem, you can pass additional arguments after the trigger() event
argument, and theyOll be passed as the arguments to the event handler function. For example,
calling

GEvent.trigger(map,'’zoomend',3,5);

would pass 3 as theoldLevel and 5as the newLevel But unless you changed the zoom level of the
map some other way, the zoom level wouldnOt actually change, since youOve manually forced
the zoomendevent without calling any of the zoom-related methods of the map.

214 CHAPTER 9 ADVANCED TIPS AND TRICKS

Creating Your Own Events

Along with triggering the existing events from the APIl, GEvent.trigger() can also be used to
trigger your own events. For example, you could create an updateMessagevent to trigger a script
to execute when a message box is updated, as follows:

var message = document.getElementByld('messageBox’);
GEvent.addDomListener(message,'updateMessage',function() {
/lwhatever code you want
if(message.innerHtml != ") alert('The system reported messages.");

D

Then, elsewhere in your application, you can update the message and trigger the
updateMessagevent using the GEvent.trigger() method:

var message = document.getElementByld('messageBox');
if (error) {

message.innerHtml = 'There was an error with the script.’;
}else {

message.innerHtml = ";

}

GEvent.trigger(message,'updateMessage');

Creating Map Objects with GOverlay

In Chapter 7, you saw how to use GOverlayto create an image that could hover over a location on
a map to show more detail. In that instance, the overlay consisted of a simple HTML div element
with a background image, similar to the Rectangle example in the Google Maps API documenta tion
(http://www.google.com/apis/maps/documentation/#Custom_Overlays). Beyond just a simple div,
the overlay can contain any HTML you want and therefore can include anything you could create

in aweb page. Even GoogleQs info window is really just a fancy overlay, so you could create your

own overlay with whatever features you want.

CautionAdding your own overlays will influence the limitations of the map the same way the markers did in
Chapter 7. In fact, your overlays will probably be much more influential, as they will be more complicated ar
weighty than the simpler marker overlay.

Choosing the Pane for the Overlay

Before you create your overlay, you should familiarize yourself with the GMapParenstants.
GMapParg a group of constants that define the various layers of the Google map, as repre sented
in Figure 9-6.

CHAPTER 9 ADVANCED TIPS AND TRICK@15

G_MAP_FLOAT_PANE

G_MAP_MARKER_MOUSE_TARGET_PANE —— P
G_MAP_FLOAT SHADOW PANE ——————— _
G_WAP_MARKER PANE ——— —
G_MAP_MARKER_SHADOW PANE ———————— —

G_MAP_MAP_PANE -

Figure 9-6.GMapPane constants layering

At the lowest level, flat against the map tiles, lies the G_MAP_MAP_PANE&pane is used tohold
objects that are directly on top of the map, such as polylines. Next up are the G_MAP_MARKER_
SHADOW_PaINEG_MAP_MARKER. RANtE names suggest, they hold the shadows and icons for
each of the GMarkemobjects on the map. The shadow and icon layers are separated, so the shadows
dont fall on top of the icons when markers are clustered tightly together.

The next layer above that is the G_MAP_FLOAT_SHADOWWVIRANE where the shadow of the
info window will reside. This pane is above the markers so the shadow of the info window will be
cast over the markers on the map.

The next layer, G_MAP_MARKER_MOUSE_TARG&an R#geRious trick. The mouse events
for markers are not actually attached to the markers on the marker pane. An invisible object,
hovering in the mouse target pane, captures the events, allowing clicks to be registered on the
markers hidden in the shadow of the info window. Without this separate mouse target pane, clicks
on the covered markers wouldnCt register, as the info windowOs shadow would cover the markers,
and in most browsers, only the top object can be clicked.

Finally, on top of everything else, is the G_MAP_FLOAT_PANHloat pane is the topmost pane
and is used to hold things like the info window or any other overlays you want to appear on top.

When you create your overlay object, you need to decide which of the six panes is best suited.
If your overlay has a shadow, like the custom info window presented later in Listing 9-5, youOll need
to target two panes.

To retrieve and target the DOM object for each pane, you can use the GMap2.getPane()
method. For example, to add a div tag to the float pane, you would do something similar to this:

div = document.createElement('div');
pane = map.getPane(G_MAP_FLOAT_PANE);
pane.appendChild(div);

Obviously, your code surrounding this would be a little more involved, but you get the idea.

216 CHAPTER 9 ADVANCED TIPS AND TRICKS

Creating a Quick Tool Tip Overlay

For an easyGOverlayexample, letOs create an overlay for markers that acts as atool tip, containing
just a single line of text in a colored box, as shown in Figure 9-7.

2l B LA arun

g
VE{“-?
o u:“”“”'"""'—-—!

=5 8 Breiting

o! :ﬂ?’
Wisconsint 1]

Falls— MIGFHQEH

'\S}—Chlcagn

bt -Hancok
b | Pennsylvania &y
oy L linois Indiana ON Jh

" Clhcinnatie
issauril. S Vu‘glm'a 3
Ch,,}thenmkyfh—‘ Virginia i

Tannessea,.; N rthCaruIrna

wkansas -—————
1. B, South:
L__Mlssrssagp: ';" Garuﬂm :

——
oo

i

[WIRN.

Figure 9-7.Tool tip overlay
Listing 9-2 shows the code for the tool tip overlay.

Listing 9-2. ToolTip Overlay Object

/lcreate the ToolTip overlay object

function ToolTip(marker,html,width) {
this.html_ = html;
this.width_ = (width ? width + 'px’ : 'auto’);
this.marker_ = marker;

}

ToolTip.prototype = new GOverlay();

ToolTip.prototype.initialize = function(map) {
var div = document.createElement("div");
div.style.display = 'none’;
map.getPane(G_MAP_FLOAT_PANE).appendChild(div);
this.map_ = map;
this.container_ = div;

}

ToolTip.prototype.remove = function() {
this.container_.parentNode.removeChild(this.container_);

}

CHAPTER 9 ADVANCED TIPS AND TRICK@17

ToolTip.prototype.copy = function() {
return new ToolTip(this.html);

}

ToolTip.prototype.redraw = function(force) {
if (Iforce) return;
var pixelLocation = this.map_.fromLatLngToDivPixel(this.marker_.getPoint());
this.container_.innerHTML = this.html_;
this.container_.style.position = 'absolute’;
this.container_.style.left = pixelLocation.x + "px";
this.container_.style.top = pixelLocation.y + "px";
this.container_.style.width = this.width_;
this.container_.style.font = 'bold 10px/10px verdana, arial, sans'’;
this.container_.style.border = '1px solid black’;
this.container_.style.background = 'yellow";
this.container_.style.padding = '4px’;

/lone line to desired width
this.container_.style.whiteSpace = 'nowrap';
if(this.width_ !='auto’) this.container_.style.overflow = 'hidden’;

this.container_.style.display = 'block’;

}

GMarker.prototype.ToolTipInstance = null;
GMarker.prototype.openToolTip = function(content) {
//don't show the tool tip if there is a custom info window
if(this. ToolTipInstance == null) {
this.ToolTiplnstance = new ToolTip(this,content)
map.addOverlay(this.ToolTipInstance);
}

}
GMarker.prototype.closeToolTip = function() {

if(this.ToolTipInstance != null) {
map.removeOverlay(this. ToolTiplnstance);
this.ToolTipInstance = null;

Now letOs see how it works.

Creating the GOverlay Object

To create the tool tip GOverlay, as listed in Listing 9-2, start by writing a function with the name
you would like to use for your overlay and pass in any parameters you would like to include. For
example, the arguments for the ToolTip overlay constructor in Listing 9-2 are the markerto attach
the tool tip to and the HTML to display in the tool tip . For more control, thereOsalso an optional
width to force the tool tip to a certain size:

218

CHAPTER 9 ADVANCED TIPS AND TRICKS

function ToolTip(marker,html,width) {
this.html_ = html;
this.width_ = (width ? width + 'px’ : 'auto’);
this.marker_ = marker;

This function, ToolTip, will act as the constructor for your ToolTip class. Once finished, you
would instantiate the object by creating a new instance of the ToolTip class:

var tip = new ToolTip(marker, This is a marker’);

When assigning properties to the class, such as html, itOs always good to distinguish the
internal properties using something like an underscore, such as this.html_ . This makes it easy
to recognize internal properties, and also ensure that you don0t accidentally overwrite a property
of the GOverlayclass, if Google has usedhtml as a property for the GOverlayclass.

Next, instantiate the GOverlayas the prototype for your new ToolTip function:

ToolTip.prototype = new GOverlay();

Creating and Positioning the Container

For the guts of your ToolTip class, you need to prototype the four required methods listed in
Table 9-1.

Table 9-1.Abstract Methods of the GOverlay Object

Method Description
initialize() Called by GMap2.addOverlay()when the overlay is added to the map
redraw(force) Executed once when the object is initially created and then again whenever

the map display changes; force will be true in the event the API recalculates
the coordinates of the map

remove() Called when removeOverlay() methods are used

copy() Should return an uninitialized copy of the same object

First, start by prototyping the initialize() function:

ToolTip.prototype.initialize = function(map) {
var div = document.createElement("div");
div.style.display="none’;
map.getPane(G_MAP_FLOAT_PANE).appendChild(div);
this.map_ = map;
this.container_ = div;

The initialize() method is called by GMap2.addOverlay()when the overlay is initially
added to the map. Use it to create the initial div, or other element, and to attach the div to the
appropr iate pane using map.getPane(). Also, you probably want to assign the mapvariable to an
internal variable so youOll still have access to it from inside the other methods of the ToolTip object.

Next, prototype the redraw() method:

CHAPTER 9 ADVANCED TIPS AND TRICK@19

ToolTip.prototype.redraw = function(force) {
if (Iforce) return;
var pixelLocation = this.map_.fromLatLngToDivPixel(this.marker_.getPoint());
this.container_.innerHTML = this.html_;
this.container_.style.position="absolute’;
this.container_.style.left = pixelLocation.x + "px";
this.container_.style.top = pixelLocation.y + "px";

- cut -

this.container_.style.display = 'block’;

The redraw() method is executed once when the object is initially created and then again
whenever the map display changes. The force flag will be true only in the event the API needs
to recalculate the coordinates of the map, such as when the zoom level changes or the pixel offset
of the map has changed. ItOs also true when the overlay is initially created so the object can be
drawn. For your ToolTip object, the redraw() method should stylize the container_div element
and position it relative to the location of the marker. In the event that a width was provided, the
div should also be defined accordingly, as it is in Listing 9-2.

Lastly, you should prototype the copy() and remove() methods:

ToolTip.prototype.remove = function() {
this.container_.parentNode.removeChild(this.container_);

}

ToolTip.prototype.copy = function() {
return new ToolTip(this.marker_,this.html_,this.width_);

}

The copy() method should return an uninitialized copy of the same object to the map. The
remove() method should remove the existing object from the pane.

Using Your New Tool Tip Control

At the bottom of Listing 9-2 youOll also notice the addition of a few prototype methods on
the GMarkerclass. These give you a nice API for your newToolTip object by allowing you to call
GMarker.openToolTip('This is a marker’) to instantiate the tool tip; GMarker.closeToolTip()
will close the tool tip.

Now you can create a marker and add a few event listeners, and youOll have a tool tip that
shows on mouseover similar to the one shown earlier in Figure 9-7:

var marker = new GMarker(new GLatLng(43, -80));

GEvent.addListener(marker,'mouseover’,function() {
marker.openToolTip('This is a GMarker!");

»;

GEvent.addListener(marker,'mouseout’,function() {
marker.closeToolTip();

»;

map.addOverlay(marker);

220

CHAPTER 9 ADVANCED TIPS AND TRICKS

The ToolTip overlay is relatively simple but very useful. Later in the chapter, youOll revisit
the GOverlayobject when you create an overlay thatOs a little more complicated, to serve as your
own customized info window (Listing 9-5).

Creating Custom Controls

Overlays are useful, but they generally apply to something on the map fixed to a latitude and
longitude. When you drag the map, the overlays go with it. If you want to create a control or other
object on the map thatOs fixed to a relative location within the map container, similar to the zoom
control or the map type buttons, youOll need to implement a GControl interface.

Six controls are built into the Google Maps API, as youOve seen throughout the book. Along
with version 10sGSmallMapContrglGLargeMapContrglGSmallZoomContrgland GMapTypeControl
the controls GScaleControl and GOverviewMapControfwhich shows a little overview window in
the corner of the screen) were introduced in version 2 of the API. Depending on your applica tion
and features, you can enable or disable the controls so your users can have varying degrees of
control over the map.

If these controls don®t suit your needs, you can implement a custom control that replicates
the functionality of one of GoogleOs existing controls, or create something completely different.
For example, the Google Maps API documentation at http://www.google.ca/apis/maps/
documentation/#Custom_Controls provides an example of a textual zoom control. The Google
TextualZoomControl creates the text-based Zoom In and Zoom Out buttons shown in F igure 9-8
and is an alternative to the GSmallMapContral

rorcno ey

" . S ; M L PN
' ON ¥ ac e
WA . MT MND |MN ¥ L : .’;-"].NB"'---;-l-..F.E
orR ! 1p] so | _wil Nt 'T-“F”{/.NS
iy it v (T g B e VT
LNV T %L N OH L PA S SEIMAING
UL £0 | ks IMot /i Vo NESICHRI
CA M= Fee .;m). TR e RNDE N
PAZNM D I E |TNSCu DEMD
ok ML R A_L_.Ga.
A\ LA North
POWERED Bt 4 GUU’_O? FL Atlantic Ocaan
GOUSL? Mexico Mexico Nap data 2006 TeleAllas - ~= ol Loe

Figure 9-8.The Google textual zoom control adds Zoom In and Zoom Out buttons.

As an example, weQll show you how to create a custom icon control. After all the hard work
you®ve poured into your web application, it might be nice to promote yourself a little and put your
company logo down in the corner next to GoogleOs. After all, a little promotion never hurt anyone.
Implementing the icon control in Figure 9-9 is relatively simple, as you can see in Listing 9-3,
and itOs a great example you can further expand on.

CHAPTER 9 ADVANCED TIPS AND TRICK321

Figure 9-9.A promotional map control, clickable to a supplied link

Listing 9-3. Promotional Icon PromoControl

var PromoControl = function(url) {
this.url_ = url;

%
PromoControl.prototype = new GControl(true);

PromoControl.prototype.initialize = function(map) {
var container = document.createElement("div");
container.innerHTML = '<img style="cursor:pointer"
src="http://googlemapsbook.com/PromoApress.png" border="0">";
container.style.width="120px";
container.style.height="32px’;
url = this.url_;
GEvent.addDomlListener(container, "click", function() {
document.location = url;
D;
map.getContainer().appendChild(container);
return container;

h

PromoControl.prototype.getDefaultPosition = function() {
return new GControlPosition(G_ANCHOR_BOTTOM_LEFT, new GSize(70, 0));

h

The following sections describe how Listing 9-3 works.

222

CHAPTER 9 ADVANCED TIPS AND TRICKS

Creating the Control Object

To create your promo GControl object, start the same way you did with the GOverlayin the
previous example. Create a function with the appropriate name, but use the prototype object
to instantiate the GControl class.

var PromoControl = function(url) {
this.url_ = url;
I3

PromoControl.prototype = new GControl(true);

By passing in aurl parameter, your PromoControlcan be clickable to the supplied url and you
can reuse the PromoControlfor different URLS, depending on your various mapping applications.

Creating the Container

Next, there are only two methods you need to prototype. First is the initialize() method, which
is similar to the initialize() method from the GOverlayexample:

PromoControl.prototype.initialize = function(map) {
var container = document.createElement("div");
container.innerHTML = '<img src="http://goog lemapsbook.com/PromoApress.png"
border="0">";
container.style.width="120px’;
container.style.height="32px’;
url = this.url_;
GEvent.addDomListener(container, "click", function() {
document.location = url;
»;
map.getContainer().appendChild(container);
return container;

The difference is the GOverlay.initialize() method will be called by the GMap2.addCuwol()
method when you add the control to your map. In the case of GControl, the container div for the
control is attached to the mapOs container DOM object returned from the GMap2.getCdainer()
method. Also, you can add events such as theclick event to the container using the GEvent.
addDomListener() method. For more advanced controls, you can include any HTML you want
and apply multiple events to the various parts of the control. For the PromoContro| youQre simply
including an image that links to the supplied URL, so one click event can be attached to the
entire container.

Positioning the Container

Last, you need to position the PromoControlwithin the map container by returning anew instance
of the GControlPostion class from the getDefaultPosition prototype:

CHAPTER 9 ADVANCED TIPS AND TRICK@&23

PromoControl.prototype.getDefaultPosition = function() {
return new GControlPosition(G_ANCHOR_BOTTOM_LEFT, new GSize(70, 0));

kh

The GControlPosition represents the anchor point and offset where the control should reside.
To anchor the control to the map container, you can use one of four constants:

¥ G_ANCHOR_TOP_RuGH€thor to the top-right corner

¥ G_ANCHOR_TOP_toEdichor to the top-left corner

¥ G_ANCHOR_BOTTOM t&Hzidfor to the bottom-right corner
¥ G_ANCHOR_BOTTOMoldzEmor to the bottom-left corner

Once anchored, you can then offset the control by the desired distance. For the PromoCdrol ,
anchoring to just G_ANCHOR_BOTTOMvduiéFinterfere with the Google logo, thus going against
the Terms and Conditions of the API. To fix this, you offset your control using anew GSizeobject
with an X offset of 70 pixels, the width of the Google logo.

Cautionif you plan on using @®caleControl as well, remember that it too will occupy the space next
to the Google logo, so youOll need to adirstyaTiontrolaccordingly.

Using the Control

With your PromoControlfinished, you can add it to your map using the same GMap2.addControl()
method and a new instance of your PromoControt

map.addControl(new PromoControl(‘'http://googlemapsbook.com’));

YouOll end up with your logo positioned neatly next to the Google logo, linked to wherever
you like, as shown earlier in Figure 9-9.

Adding Tabs to Info Windows

If youOre happy with the look of the Google info window, or you don®t have the time or budget
to create your own info window overlay, there are a few new features of the Google Maps API
version 2 info window that you may find useful. With version 1 of the Google Maps API, the info
window was just the stylized bubble with a close box, as shown in Figure 9-10. You could add
tabs, but the limit was two tabs and doing so required hacks and methods that were not Qoffi cial®O
parts of the API.

224

CHAPTER 9 ADVANCED TIPS AND TRICKS

Figure 9-10.The version 1 info window

Creating a Tabbed Info Window

With version 2 of the API, Google has added many tab-related features to its info windows. You
can have multiple tabs on each info window, as shown in Figure 9-11, and you can change the tabs
from within the API using various GlInfoWindownethods, as shown in Listing 9-4.

Figure 9-11.A tabbed info window

CHAPTER 9 ADVANCED TIPS AND TRICK@&25

Listing 9-4. Info Window with Three Tabs

map = new GMap2(document.getElementByld("map"));
map.addControl(new GSmallMapControl());

map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

marker = new GMarker(new GLatLng(centerLatitude, centerLongitude));
map.addOverlay(marker);

var infoTabs =
new GinfowindowTab("Tab A", "This is tab A content"),
new GinfowindowTab("Tab B", "This is tab B content"),
new GinfowindowTab("Tab C", "This is tab C content")

5

marker.openinfoWindowTabsHtml(infoTabs,{
selectedTab:1,
maxWidth:300

D

GEvent.addListener(marker,'click’,function() {
marker.openinfoWindowTabsHtml(infoTabs);

D

To create the info window with three tabs in Figure 9-11, you simply create an array of
GInfoWindowTabbjects:

var infoTabs = [
new GInfowindowTab("Tab A", "This is tab A content"),
new GInfowindowTab("Tab B", "This is tab B content"),
new GInfoWindowTab("Tab C", "This is tab C content")

Then use GMarker.openinfoWindowTabsHtml(Jo create the window in r ight away:

marker.openinfoWindowTabsHtml(infoTabs,{
selectedTab:1,
maxWidth:300

b
orin an event:

GEvent.addListener(marker,'click’,function() {
marker.openinfoWindowTabsHtml(infoTabs);

D

Additionally, you can define optional parameters for the tabbed info window the same way
you can define options using the GMarker.openinfoWindownethods.

226 CHAPTER 9 ADVANCED TIPS AND TRICKS

Gathering Info Window Information and Changing Tabs
If other parts of your web application need to interact with the various tabs on your info window,
things get a little trickier. When the tabbed info window is created, the API instantiates the object
for you, so you don®t actually have direct access to the info window object yet. As you saw in
Chapter 3, there is only one instance of an info window on a map at a time, so you can use the
GMap2.getinfowiow() method to retrieve a handle for the current info window:
var windowHandle = map.getinfoWindow();
With the handle, you can then use any of the GInfowindownethods to retrieve information
or perform various operations, such as the following:
¥ Retrieve the latitude and longitude of the window anchor:
windowHandle.getPoint();
¥ Hide the window:
windowHandle.hide();
¥ Switch to another tab:

windowHandle.selectTab(2);

For afull list of the GInfoWindownethods, see the APl in Appendix B.

Creating a Custom Info Window

If you follow the Google Maps discussion group (http://groups.google.com/group/
Google-Maps-AP), youOll notice daily posts regarding feature requests for the info window. Feature
requests are great,but most people donQt realize the info window isnOt really anything special. ItOs
just another GOverlaywith a lot of extra features. With a little JavaScript and GOverlay, you can
create your very own info window with whatever features you want to integrate. To get you started,
weOll show you how to create the new info window in Figure 9-12, which occupies a little less
screen real estate, but offers you a starting point to add on your own features.

[T] }
|3 I) =
raN Y S ‘:H"“‘?"‘ W Hudson Bay, *
! »
Al i L
= s pEMB =3
™ BT 5K i . d
&, : 1 on h Hello World! ¥
i Il‘nls Is my Infa window!
5 | Tl g T
WA M | MDA
b2 R TA X
OR 110 Ty [-30 bWy e
! | A TG
HE PA
NY i o= L imfOH L
ut| co | KS [MOL fo oWV
o / 2L,
AR, 1 =
1 AT NM
s el il
oy LA i Mol
8 oo Adnbe Gonart
Iexico Mzaaco
Cutm
PR
reengn e
Gorgle e Mop deta G006 TolAtes - o 1

Figure 9-12.A custom info window

CHAPTER 9 ADVANCED TIPS AND TRICK@&27

To begin, youOll need to open up your favorite graphics program and create the frame for the
window. If you just need a box, then itOs not much more difficult then the ToolTip object you
created earlier. For this example, we used the Adobe Photoshop PSD file youOll find with the code
accompanying this book, as illustrated in Figure 9-13. Once you have your info window work ing,
feel free to modify it any way you want. You can edit the PSD file or create one of your own. For
now, create a folder called littteWindow in your working directory and copy the accompanying
presliced PNG files from the littleWindow folder in the Chapter 9 source code.

(CHaNE) LittlelInfoWindow.psd @ 100% (window, RGB/8)
||||||}t|j?||||||l£|‘ Lilal |ﬂ| Lalal |-SD |1t|)0

=

£
100% || Doc 71.5K(238.2K [

N

Figure 9-13.The info window art file

The finalized framework for the LittlelInfoWwindow overlay in Listing 9-5 is almost identi cal to
the ToolTip overlay you created earlier in Listing 9-3, but the internals of each function are
quite different.

Listing 9-5. The LittleInfowindow Object

/[create the LittlelInfowWindow overlay onject
function LittleInfowindow(marker,html,width) {
this.html_ = html;
this.width_ = (width ? width + 'px' : 'auto’);
this.marker_ = marker;

}

/luse the GOverlay class
LittleInfoWindow.prototype = new GOverlay();

/finitialize the container and shadowContainer
LittleInfowindow.prototype.initialize = function(map) {
this.map_ = map;

var container = document.createElement("div");
container.style.display='none";
map.getPane(G_MAP_FLOAT_PANE).appendChild(container);
this.container_ = container;

228

CHAPTER 9 ADVANCED TIPS AND TRICKS

var shadowContainer = document.createElement("div");
shadowContainer.style.display="none’;
map.getPane(G_MAP_FLOAT_SHADOW_PANE).appendChild(shadowContainer);
this.shadowContainer_ = shadowContainer;

}

LittleInfowindow.prototype.remove = function() {
this.container_.parentNode.removeChild(this.container_);

//don't forget to remove the shadow as well
this.shadowContainer_.parentNode.removeChild(this.shadowContainer_);

}

LittlelInfowindow.prototype.copy = function() {
return new LittleInfowindow(this.marker_,this.html_,this.width_);

}

LittlelInfowWindow.prototype.redraw = function(force) {
if (Iforce) return;

//get the content div

var content = document.createElement("span");
content.innerHTML = this.html_;
content.style.font="10px verdana’;
content.style.margin="0";
content.style.padding="0";
content.style.border="0';
content.style.display='inline’;

if('this.width_ || this.width_=="auto' || this.width_ <= 0) {
/lthe width is unknown so set a rough maximum and minimum
content.style.minWidth = '10px’;
content.style.maxWidth = '500px’;
content.style.width = 'auto’;

}else {
/lthe width was set when creating the window
content.style.width= width + 'px’;

}

/Imake it invisible for now
content.style.visibility="hidden’;

/ltemporarily append the content to the map container
this.map_.getContainer().appendChild(content);

lIretrieve the rendered width and height
var contentWidth = content.offsetWidth;
var contentHeight = content.offsetHeight;

CHAPTER 9 ADVANCED TIPS AND TRICK&29

/Iremove the content from the map
content.parentNode.removeChild(content);
content.style.visibility="visible';

//set the width and height to ensure they
//stay that size when drawn again
content.style.width=contentWidth+'px’;
content.style.height=contentHeight+'px’;

//set up the actual position relative to your images
content.style.position="absolute";
content.style.left="5px’;

content.style.top="7px'’;
content.style.background='white';

//create the wrapper for the window
var wrapper = document.createElement("div");

[ffirst append the content so the wrapper is above
wrapper.appendChild(content);

/lcreate an object to reference each image
var wrapperParts = {
tl:{I:0, t:0, w:5, h:7},
t{l:5, t:0, w:(contentWidth-6), h:7},
tr:{l:(contentWidth-1), t:0, w:11, h:9},
I{I:0, t:7, w:5, h:contentHeight},
r:{l:(contentWidth+5), t.9, w:5, h:(contentHeight-2)},
bl:{l:0, t:(contentHeight+7), w:5, h:5},
p:{l:5, t:(contentHeight+7), w:17, h:18},
b:{l:22, t:(contentHeight+7), w:(contentWidth-17), h:5},
br:{l:(contentWidth+5), t:(contentHeight+7), w:5, h:5}
}

llcreate the image DOM objects
for (i in wrapperParts) {
var img = document.createElement('img");

/lload the image from your local image directory
//Ibased on the property name of the wrapperParts object
img.src = 'littteWindow/' + i + ".png’;

//set the appropriate positioning attributes
img.style.position="absolute’;
img.style.top=wrapperParts[i].t+'px’;
img.style.left=wrapperParts][i].I+'px’;
img.style.width=wrapperParts[i]. w+'px’;

230 CHAPTER 9 ADVANCED TIPS AND TRICKS

img.style.height=wrapperPartsJi].h+'px’;
wrapper.appendChild(img);
wrapperParts[il.img = img;

}

/ladd any event handlers like the close box

var marker = this.marker_;

GEvent.addDomListener(wrapperParts.tr.img, "click”, function() {
marker.closelLittleInfowindow();

b

/lget the X,Y pixel location of the marker
var pixelLocation = this.map_.fromLatLngToDivPixel(
this.marker_.getPaint()

);

/Iposition the container div for the window
this.container_.style.position="absolute’;
this.container_.style.left = (pixelLocation.x-3) + "px";
this.container_.style.top = (pixelLocation.y

- contentHeight

-25

- this.marker_.getlcon().iconSize.height
)+ "px";
this.container_.style.border = '0";
this.container_.style.margin = '0";
this.container_.style.padding = '0';
this.container_.style.display = 'block’;

/lappend the styled info window to the container
this.container_.appendChild(wrapper);

/ladd a shadow
this.shadowContainer_.style.position="absolute’;
this.shadowContainer_.style.left = (pixelLocation.x+15) + "px";
this.shadowContainer_.style.top = (pixelLocation.y
-10
- this.marker_.getlcon().iconSize.height
)+ "px";
this.shadowContainer_.style.border = "1px solid black’;
this.shadowContainer_.style.margin = '0';
this.shadowContainer_.style.padding = '0';
this.shadowContainer_.style.display = 'block’;

var shadowParts = {
sl:{l:0, t:0, w:35, h:26},
s:{I:35, t:0, w:(contentWidth-40), h:26},

CHAPTER 9 ADVANCED TIPS AND TRICK@&31

sr:{l:(contentWidth-5), t:0, w:35, h:26}
}

for (i in shadowParts) {
var img = document.createElement('img’);
img.src = 'littteWindow/' + i + ".png’;
img.style.position="absolute’;
img.style.top=shadowPartsJi].t+'px';
img.style.left=shadowParts][i].l+'px';
img.style.width=shadowParts][i].w+'px’;
img.style.height=shadowParts[i].h+'px’;
this.shadowContainer_.appendChild(img);

}

/lpan if necessary so it shows on the screen

var mapNE = this.map_.fromLatLngToDivPixel(
this.map_.getBounds().getNorthEast()

)

var panX=0;

var panY=0;

if(this.container_.offsetTop < mapNE.y) {
[ltop of window is above the top edge of the map container
panY = mapNE.y - this.container_.offsetTop;

}

if(this.container_.offsetLeft+contentWidth+10 > mapNE.x) {
/Iright edge of window is outside the right edge of the map container
panX = (this.container_.offsetLeft+contentWidth+10) - mapNE.x;

}

if(panX!=0 || panY!=0) {
/lpan the map
this.map_.panBy(new GSize(-panX-10,panY+30));

}

/ladd a new method to GMarker so you
/lcan use a similar API to the existing info window.
GMarker.prototype.LittleInfowindowlInstance = null;
GMarker.prototype.openLittleiInfoWindow = function(content,width) {
if(this.LittleInfowindowlnstance == null) {
this.LittleInfoWindowlnstance = new LittleInfowWindow(
this,
content,
width
)i

map.addOverlay(this.LittleInfoWindowlInstance);

232

CHAPTER 9 ADVANCED TIPS AND TRICKS

GMarker.prototype.closeLittleInfowindow = function() {
if(this.LittleInfowindowlnstance != null) {
map.removeOverlay(this.LittleInfowindowlnstance);
this.LittleInfowindowlnstance = null;

The following sections describe how this code works.

Creating the Overlay Object and Containers

Similar to the Google info window, your info window will require three inputs: amarker on which
to anchor the window, the HTML content to display, and an optional width. When you extend
this example for use in your own web application, youQll probably add more input parameters
or additional methods. You could also add the various methods and properties of the existing
GlInfowindovelass so that your class provides the same API as GoogleOs info window, with tabs and
an assortment of options. To keep things simple in the example, we stick to the essentials.

Like the ToolTip object you created earlier, the LittleInfowindow object in Listing 9-5 starts
off the same way. The LittleInfowWindow function provides a construction using the marker, html,
and width arguments, while the GOverlayis instantiated as the prototype object. The first big
difference comes in the initialize() method where you create two containers. The first
container, for the info window, is attached to the G_MAP_FLOAT_R»ENE:

var container = document.createElement("div");
container.style.display='none’;
map.getPane(G_MAP_FLOAT_PANE).appendChild(container);
this.container_ = container;

And the second container, for the info windowOs shadow, is attached to the G_MAP_FLOAT _
SHADOW_Ppaite:

var shadowContainer = document.createElement("div");
shadowContainer.style.display="none’;
map.getPane(G_MAP_FLOAT_SHADOW_PANE).appendChild(shadowContainer);
this.shadowContainer_ = shadowContainer;

Tip A shadow isnOt required for overlays, but it provides a nice finishing touch to the final map and mak
your web application look much more polished and complete.

Next, the remove() and copy() methods are again identical in functionality to the ToolTip
overlay, except the remove() method also removes the second shadowContaineralong with the
info window container.

Drawing a LittleInfowindow

The most complicated part of creating an info window is properly positioning it on the screen
with the redraw() method, and the problem occurs only when you want to position it abovethe
existing marker or point.

CHAPTER 9 ADVANCED TIPS AND TRICK@&33

When rendering HTML, the page is drawn on the screen top down and left to right. You can
assign sizes and positions to html elements using CSS attributes, but in general, if there are no sizes
or positions, things will start at the top and flow down. When you create the info window in the
redraw() method, youOll take the HTML passed into the constructor, put it in a content div, and
wrap it with the appropriate style. On an empty HTML page, you know the top-left corner of the
content div is at (0,0), but where is the bottom-right corner? The bottom-right corner is dependent
on the content of the div and the general style of the div itself.

The ambiguity in the size of the div is compounded when you want to position the div on
the map. The Google Maps API requires you to position the overlay using absolute positioning.
To properly position the info window, so the arrow is pointing at the marker, you need to know
the height of the info window, but as we said, the height varies based on the content. Luckily for
you, browsers have a little-known feature that allows you to access the rendered position and
size of elements on a web page.

Determining the Size of the Container

When creating the redraw() function, the first thing youQll do is put the HTML into a content div
and apply the appropriate base styles to the div:

var content = document.createElement("div");
content.innerHTML = this.html_;
content.style.font="10px verdana’;
content.style.margin="0";
content.style.padding="0";
content.style.border="0';
content.style.display='inline’;

if('this.width_ || this.width_=="auto' || this.width_ <= 0) {
/lthe width is unknown so set a rough maximum and minimum
content.style.minWidth = '10px’;
content.style.maxWidth = '500px’;
content.style.width = 'auto’;

}else {
/lthe width was set when creating the window
content.style.width= width + 'px’;

}

/Imake it invisible for now.
content.style.visibility="hidden’;

The display="inline’' and the last style attribute, visibility="hidden' , are important for
the next step. To determine the div Os rendered position and size properties, you need to access
hidden properties of the div elements. When rendered on the page, browsers attach offset XXX
properties. where the XXXs Left , Right, Width, or Height. These give you the position and size, in
pixels, of the DOM element after itOs rendered. For your info window, youOre concerned with the
offsetWidth and offsetHeight , as youOll need them to calculate the overall size of the window.

To access the offset variables, youll first need to render thecontent div on the page. At this
point in the overlay, the content DOM element exists only in the browser®s memory and hasnOt

234

CHAPTER 9 ADVANCED TIPS AND TRICKS

been OdrawnO yet. To do so, append theontent to the map container and retrieve the width and
height before removing it again from the map container:

this.map_.getContainer().appendChild(content);
var contentWidth = content.offsetWidth;

var contentHeight = content.offsetHeight;
content.parentNode.removeChild(content);
content.style.visibility="visible';

//set the width and height to ensure they stay that size when drawn again.
content.style.width=contentWidth+'px’;
content.style.height=contentHeight+'px’

The brief existence of the content div inside the map container allowed the browser to set
the offset properties so you could retrieve the offsetWidth and offsetHeight . As we mentioned,
the inline display and the hidden visibility are important to retrieving the correct size. When the
display is inline , the bounding div collapses to the size of the actual content, rather than
expanding to a width of 100%, giving you an accurate width. Setting the visibility to hidden
prevents the content from possibly flashing on the screen for a moment, but at the same time,
preserves the size and shape of thediv .

Building the Wrapper

Now that you have the size of the content box, the rest is pretty straightforward. First, style the
content accordingly and create another div, the wrapper, to contain the content and the additional
images for the eye candy bubble wrapper from Figure 9-13.

content.style.position="absolute";
content.style.left="5px’;

content.style.top="7px’;
content.style.background='white';

var wrapper = document.createElement("div");
wrapper.appendChild(content);

To minimize the HTML required for the LittleiInfowindow , the images in the wrapper can
be positioned using absolute positioning. The sample wrapper consists of nine separate images:
four corners, four sides, and an additional protruding arm, as outlined in Figure 9-14 (along with
the shadow and marker images). To give the new info window a similar feel to GoogleQs info window,
the upper-right corner has also been styled with an X in the graphic to act as the close box.

1o i
Lo i Bl

of T
o Hello World! ||
[This Is my Info window? |f
T

el
A

Lo _NY IS,

Figure 9-14.0utlined images for the LittleInfoWindow wrapper

CHAPTER 9 ADVANCED TIPS AND TRICK@&35

To create the wrapperobject in Listing 9-5, you could use the innerHTMLproperty to add
the images using regular HTML, but that wouldn®t allow you to easily attach event listeners to the
images. By creating each image as a DOM object:

var wrapperParts = {
tl:{I:0, t:0, w:5, h:7},
t{I:5, t:0, w:(contentWidth-6), h:7},
- cut -

}

/lcreate the images

for (i in wrapperParts) {
var img = document.createElement('img’);
- cut -
wrapper.appendChild(img);
wrapperParts[il.img = img;

}

and using the wrapper.appendChild() method, you can then attach event listeners directly to
image DOM elements, as when you want to add a click event to the close box:

var marker = this.marker_;
GEvent.addDomlListener(wrapperParts.tr.img, "click", function() {
marker.closeLittleInfowindow();

h;

Now all thatOs left to do with the Littlelnfowindow container is position it on the map and
append the wrapper. The design of the LittleInfowindow has the arm protruding in the lower-left
corner, so youOll want to position the top of the container so that the arm rests just above the
marker. You can get the markerOs position using the GMap2.fromLatLngToDivPixel() method you
saw earlier in the chapter, and then use the calculated height of the LittleiInfowindow plus the
height of the marker icon to determine the final resting position:

var pixelLocation = this.map_.fromLatLngToDivPixel(this.marker_.getPoint());
this.container_.style.position="absolute’;
this.container_.style.left = (pixelLocation.x-3) + "px";
this.container_.style.top = (pixelLocation.y
- contentHeight
-25
- this.marker_.getlcon().iconSize.height
) +"px",
this.container_.style.display = 'block’;

this.container_.appendChild(wrapper);

Adding a Few Shades of Finesse

Your LittleiInfoWindow should now be working, but a few tasks remain before we can call it
complete. First, letOs add a shadow to the window similar to the one on GoogleOs info window. The
shadow images are also supplied in the PSD files accompanying the book. The process for adding

236

CHAPTER 9 ADVANCED TIPS AND TRICKS

the shadow is similar to the wrapper you just created. We wonGt go through it again here, but you
can take alook at the complete code in Listing 9-5 and see the example there. The shadow, in this
case, expands only horizontally with the size of the wrapper, but you could easily add vertical
expansion as well.

Listing 9-5 also includes some pan adjustments when your window initially opens. The nice
thing about the Google®s info window is when it opens off-screen, the map pans until the window
is visible on-screen. You can easily add this same functionality by comparing the upper-right
corner of your LittleiInfoWindow with the top and right edges of the map container:

var mapNE = this.map_.fromLatLngToDivPixel(this.map_.getBounds().getNorthEast());
var panX=0;
var panY=0;
if(this.container_.offsetTop < mapNE.y) {
panY = mapNE.y - this.container_.offsetTop;
}
if(this.container_.offsetLeft+contentWidth+10 > mapNE.x) {
panX = (this.container_.offsetLeft+contentWidth+10) - mapNE.x;

}
if(panX!=0 || panY!=0) {this.map_.panBy(new GSize(-panX-10,panY+30)); }

Then, if necessary, you can pan the map, just as Google does, to show the open window. If you
check out the online example at http://googlemapsbook.com/chapter9/CustominfowWindow/ ,
you can see the pan in action by moving the marker to the top or right edge and then clicking it to
open the LittleInfoWindow .

Using the LittleInfowindow

The last and final addition for your LittleInfowindow should be the creation of the appropriate
methods on the GMarkerlass, in the same way you created methods for the ToolTip earlier. Again,
by adding open and close methods to the GMarkerclass:

GMarker.prototype.LittleInfowindowlInstance = null;
GMarker.prototype.openLittleiInfoWindow = function(content,width) {
if(this.LittleInfowindowInstance == null) {
this.LittleInfoWindowlnstance = new LittleInfowindow(this,content,width)
map.addOverlay(this.LittleInfoWindowlInstance);
}
}

GMarker.prototype.closeLittleInfowindow = function() {
if(this.LittleInfowindowInstance != null) {
map.removeOverlay(this.LittleInfowWindowlnstance);
this.LittleInfowindowlnstance = null;

}

you can access your custom info window with an API similar to the Google info window using
something like this:

GEvent.addListener(marker,'click’,function() {
if(marker.LittleInfowindowlInstance) {

CHAPTER 9 ADVANCED TIPS AND TRICK@37

marker.closeLittleInfowindow();
}else {
marker.openLittleiInfowindow('Hello World!

This is my info window!);
}
b

The difference from GoogleOs info window is that the LittlelnfowindowlInstance s attached
to the GMarker not the map, so you have the added advantage of opening more than one window
at the same time. If you want to force only one window open at a time, youOll need to track the
instance using the map object, rather than the marker.

Implementing Your Own Map Type, Tiles, and
Projection

By default, three types of maps are built into the Google Maps API:

¥ Map (often referred to as Normal), which shows the earth using outlines and colored
objects, similar to a printed map you might purchase for driving directions

¥ Satellite, which shows the map using satellite photos of the earth taken from space

¥ Hybrid , which is a mixture of the satellite images overlaid with information from the
normal map type

Each map is an instance of the GMapTypaass, and each has its own constant G_NORMAL_MAP
G_SATELLITE_NMARd G_HYBRID_MAd3pectively. To quickly refer to all three, there is also the
G_DEFAULT_MAP_TaaMsgnt, which is an array of the previous three constants combined.

In the example in this section, youOll create your own map using a new projection and the
NASA Visible Earth images (ttp://visibleearth.nasa.gov). But first, you need to understand
how the map type, projection, and tiles work together.

GMapType: Gluing It Together

Understanding the GMapType key to understanding how the different classes interact to create
a single map. Each instance of the GMapTyp#ass defines the draggable map you see on the sceen.
The map type tells the APl what the upper and lower zoom levels are, which GTileLayer objects
to include in the map, and which GProjection to use for latitude and longitude calculations.
A typical GMapTypebject would look similar to this:

var MyMapType = new GMapType(

[MyTileLayerl, MyTileLayer?2],

MyProjection,

‘My Map Type'{
shortName:'Mine’,
tileSize:256,
maxResolution:5,
minResolution:0

D

238

CHAPTER 9 ADVANCED TIPS AND TRICKS

MyTileLayerl and MyTileLayer2 would be instances of the GTileLayer class, and MyPrgection
would be an instance of the GProjection class. The third parameter for GMapTypie the label to
show on the map type button in the upper-right corner of the Google map. YouOll also notice the
fourth parameter is a JavaScript object implementing the properties of the GMapTypeOptions
class, listed in Table 9-2. In this case, the short name is Ming the tile size is 256x256 pixels, and
the zoom levels are restricted to 0 through 5.

Cautionin your map type, all the tiles in each@Tileeayer objects must be of equal size. You canOt
mix and match tile sizes within the same map type.

Table 9-2.GMapTypeOptions Properties

Property Description

shortName The short name is returned from GMapType.getName(trueand is used in
the GOverviewMapControlThe default is the same as the name supplied in the
GMapTypaguments.

urlArg Optional parameters for the URL of the map type; can be retrieved using
GMapType.getUrlArg().

maxResolution The maximum zoom level of this map type.

minResolution The minimum zoom level of this map type.

tileSize The tile size. The default is 256.

textColor The text color returned by GMapType.getTextColor(). The default is black .

linkColor Text link color returned by GMapType.getLinkColor(). The default is #7777cc

errorMessage An optional message returned by GMapType.getErrorMessage()

The GMapTypebject directs tasks to various other classes in the API. For instance, when you
need to know where a longitude or latitude point falls on the map, the map type asks the
GPrgection where the point should go. When you drag the map around, the GTileLayer receives
requests from the map type to get more images for the new map tiles.

In the case where you don(t really need a brand-new map type, and just want to add atile layer
to an existing map (as with the custom tile method described in Chapter 7), you can simply r euse
GoogleCs existing projection and tiles, layering your own on top. Using GoogleQs projection andtiles
is easy. Creating your own GProjection and GTileLayer is where things get a bit tricky.

GProjection: Locating Where Things Are

The GProjection interface handles the math required to convert latitude and longitude into
relative screen pixels and back again. It tells the map where GLatLng(-80,43) really is, and it tells
your web application what latitude and longitude is at position ~ GPoint(64,34) . Besides that, itOs
also responsible for the biggest untruth in the map.

You may not realize it, but when you look at a mapNany mapNitOs stretching the truth. A map
printed on a piece of paper or displayed on a screen is a two-dimensional representation of
a three-dimensional object. People have long understood the earth is round, but around object
cant be represented accurately in a flat image without losing or skewing some of the informa tion.

CHAPTER 9 ADVANCED TIPS AND TRICKZ39

To create the flat map, the round earth is projected onto the flat surface using some mathem atical
or statistical process, but as we said, projections do sometimes stretch the truth.

For example, take a look at Figure 9-15, where weOve outlined the United States and Geenland.
Greenland, on around globe, covers about 836,000 square miles (2,166,000 square kilometers),
and the United States covers about 3,539,000 square miles (9,166,000 square kilometers). That
means Greenland is really about 20% the area of the United States, but on the Google map (and
many other maps), it looks as though you could fit two of the United States inside Greenland! It
also looks as though Alaska is about half the area of the United States. This is because the Gogle
API uses the Mercator projection.

Figure 9-15.Comparing the United States and Greenland on a Mercator projection

Understanding Projection Types

Without going deep into mathematical theories and discussions, map projections can generally
be divided into three categoriesNplanar, conic, and cylindricalNbut some projections, such as
the Mollweide homolographic and the sinusoidal projection, are hybrids. Each category has dozens
of different variations depending on the desired use and accuracy.

240

CHAPTER 9 ADVANCED TIPS AND TRICKS

Planar: A planer map projection, often referred to as an Azimuthal projection, is created by
placing a flat plane tangent to the globe at one point and projecting the surface onto the plane
from a single point source within the globe, as represented in Figure 9-16. Imagine an image
on awall, created by placing a light inside a glass globe. The resulting circular image would
be a planar map representing the round glass globe. The positions of the latitude and
longitude lines will vary depending on the position of the plane relative to the globe,

and planar projections also vary depending on where the common point is within the
globe. These projections are often used for maps of the polar regions.

Figure 9-16.Creating a planar projection

Conic: Unlike the planer projection, the conic projection uses a cone, placed on the globe
like an ice cream cone, tangent to some parallel, as shown in Figure 9-17. Then like the planar
projection, the globe is projected into the cone using the center of the globe as the common
point. The cone can then be cut along one of the meridians and placed flat. Latitude lines
are represented by straight lines converging at the center; longitude lines are represented by
arcs with the apex of the cone at their center. Conic projections vary depending on the
position of the cone and the size of the cone.

Figure 9-17.Creating a conic projection

Cylindrical : Cylindrical projections are similar to both the other two types of projections;
however, the plane is wrapped around the globe like a cylinder, tangent to the equator, as
illustrated in Figure 9-18. The globe is then projected on to the cylinder from a central point
within the globe, or along a central line running from pole to pole. The resulting map has
equidistant parallel longitude lines and parallel latitude lines that increase in distance as
you move farther from the equator. The difficulty with cylindrical projections is that the poles
of the earth can0t be represented accurately.

CHAPTER 9 ADVANCED TIPS AND TRICK341

o

e
4

s

ACE R

\(
Oy

B ik
3
S
:
)
e

&
R

Figure 9-18.Creating a cylindrical projection

The Mercator projection used by the Google Maps API is a cylindrical projection; however,
the latitude lines are mathematically adjusted using one of the following equations where
represents the longitude and represents the latitude:

x= S

0

1 1
=In tan — +—
4 2

1 1+sin

2 1Ssin
=sinh® (tan)
= tanh® (sin)

=In(tan +sec)

The equations preserve more realistic shapes, as shown in Figure 9-19.

T gl ||
WIE:: ;IIIiIII!II"’llI!III

1-—\

Iliii .-I 'q' "!III & ‘mlﬂj ‘gE._I

B ﬂh Eurt

i nmcnn: ‘éu x!“l h 'Hg..ll
! I

IHE:i
1 _-'I‘IIII IE!I&"III

B o T T e 1]
S

iI|iII|IIIEFIIIIIIE;IHHHIHIIIHIII
'IEIE!'EH 4l
Il! W 4

"P"

[

Figure 9-19.Latitude and longitude lines of the Google Maps APIOs Mercator projection

242

CHAPTER 9 ADVANCED TIPS AND TRICKS

The downside with Mercator projections, as you saw in Figure 9-15, is that areas farther away
from the equator are greatly exaggerated and the poles themselves can0t be shown.

Using a Different Projection

By default, all of the maps in the API use the built-in GMercatorProjection class. The
GMercatorProjection is an implementation of the GProjection interface using the Mercator
projection. If your custom map image is using the Mercator projection, you donOt have to
worry about implementing your own GProjection interface, and you can just reference the
GMercatorProjection class. If you would like to use a projection other than the Mercator
projection, you need to create a new class for your projection and implement the methods
listed in Table 9-3.

Table 9-3.Methods Required to Implement a GProjection Class

Method Return Value Description
fromLatLngToPixel GPoint Given the latitude, longitude from the GLatLng
(lating,zoom) object, and zoom level,returns the X and Y pixel

coordinates of the location relative to the bounding
div of the map.

fromPixelToLatLng GlLatLng Reverse offromLatLngToPixel. Given the pixel

(pixel,zoom,unbounded) coordinates and zoom, returns the geographical
latitude and longitude on the location. If the
unbounded flag is true, the geographical longitude
should not wrap when beyond -180 or 180 degrees.

tileCheckRange Boolean Returns true if the tile index is within a valid range

(tile,zoom,tilesize) for the known map type. If false is returned, the map
will display an empty tile. In the case where you
want the map to wrap horizontally, you may need
to modify the tile index to point to the index of an
existing tile.

getWrapWidth(zoom) Integer Given the zoom level, returns the pixel width of the
entire map at the given zoom. The API uses this value
to indicate when the map should repeat itself. By
default, getWrapWidth() returns Infinity , and the
map does not wrap.

Listing 9-6 shows a generic implementation of an equidistant cylindr ical projection, which
youOll use in the OThe Blue Marble Map: Putting it All TogetherO section later in the chapter to
create a map using the NASA Visible Earth images as tiles. The equidistant cylindrical projec tion
is created by plotting the latitude and longitude values from the globe in a 1:1 ratio on a plane,
as shown in Figure 9-20. This creates a map whose width, unlike GoogleOs Mercator projection,
is always twice its height while latitude and longitude lines are all at equal distances. If you
compare y our final map with the Google map, your equidistant cylindrical map will actually
be half the height and thus half the number of overall tiles per zoom level.

CHAPTER 9 ADVANCED TIPS AND TRICK@&43

Figure 9-20.Equidistant cylindrical projection

YouOll also notice the projection in Listing 9-6 has an additional property,
Equidistant CylindricalProjection.mapResolutions , to hold the overall width of the map at
each zoom level.

CautionYour implementation ofGReojection interface is dependent on the resolution of the map image
you plan to use. If you want to reus&MbecatorProjection , your map images must match the sizes
discussed in the next section.

Listing 9-6. Equidistant Cylindrical GProjection

EquidistantCylindricalProjection = new GProjection();
EquidistantCylindricalProjection.mapResolutions = [256,512,1024]

EquidistantCylindricalProjection.fromLatLngToPixel = function(lating,zoom) {

var Ing = parselnt(Math.floor((this.mapResolutions[zoom] / 360) *
(lating.Ing() + 180)));

var lat = parselnt(Math.floor(Math.abs((this.mapResolutions[zoom] / 2 / 180) *
(lating.lat()-90))));

var point = new GPoint(Ing,lat);

return point;

}

EquidistantCylindricalProjection.fromPixelToLatLng =
function(pixel,zoom,unbounded) {
var lat = 90-(pixel.y / (this.mapResolutions[zoom] / 2 / 180));
var Ing = (pixel.x / (this.mapResolutions[zoom] / 360)) - 180;

THE EXPERT’S VOICE® IN WEB DEVELOPMENT | #

Beginning

Google Maps
Applications
with PHP and Ajax

From Novice to Professional

Build awesome web-based mapping applications with this powerful API!

Michael Purvis, Jeffrey Sambells,
and Cameron Turner

Foreword by Mike Pegg,
Founder of the Google Maps Mania Blog

Apress’

