
Beginning Google Maps
Applications with
PHP and Ajax
From Novice to Professional

Michael Purvis
Jeffrey Sambells
and Cameron Turner

7079ch00FM.qxd 7/27/06 3:18 PM Page i

Beginning Google Maps Applications with PHP and Ajax: From Novice to Professional

Copyright © 2006 by Michael Purvis, Jeffrey Sambells, and Cameron Turner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-707-1

ISBN-10 (pbk): 1-59059-707-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewer: Terrill Dent
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Elizabeth Seymour
Copy Edit Manager: Nicole LeClerc
Copy Editor: Marilyn Smith
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Kinetic Publishing Services, LLC
Proofreader: Liz Welch
Indexer: Beth Palmer
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com .

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com .

The information in this book is distributed on an Òas isÓ basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section
or at the official book site, http://googlemapsbook.com .

7079ch00FM.qxd 7/27/06 3:18 PM Page ii

To Anne and Jim, that with GodÕs grace,
I might one day be so loving a parent.

ÑMichael Purvis

Dedicated to my loving wife, Stephanie, always by my side as my navigator in life.
May we never lose our way in this crazy world.

And also to my parents, Frank and Linda,
who taught me to always look beyond the horizon.

ÑJeffrey Sambells

I dedicate this book to my amazing wife, Tanya, and our son, Owen.
Tanya is the ultimate teammate and life partnerÑ

always willing to dive into an adventure or opportunity regardless of the size.
IÕd also like to thank my parents, Barry and Lorna, for supporting me

in all my ambitions and encouraging me to take risks and pursue dreams.
Without all of you, I would never have agreed to write my first book

about a moving-target topic such as Google Maps,
on a compressed timeline, with a newborn baby!

To everyone else who helped out in the last few months, thank you.
We couldnÕt have completed this book without your help and patience.

ÑCameron Turner

7079ch00FM.qxd 7/27/06 3:18 PM Page iii

7079ch00FM.qxd 7/27/06 3:18 PM Page iv

Contents at a Glance

Foreword. xv

About the Authors. xix

About the Technical Reviewer. xxi

Acknowledgments. xxiii

PART 1� � � Your First Google Maps
� CHAPTER 1 Introducing Google Maps. 3

� CHAPTER 2 Getting Started. 13

� CHAPTER 3 Interacting with the User and the Server. 31

� CHAPTER 4 Geocoding Addresses. 63

PART 2� � � Beyond the Basics
� CHAPTER 5 Manipulating Third-Party Data. 97

� CHAPTER 6 Improving the User Interface. 119

� CHAPTER 7 Optimizing and Scaling for Large Data Sets. 145

� CHAPTER 8 WhatÕs Next for the Google Maps API?. 199

PART 3� � � Advanced Map Features
and Methods

� CHAPTER 9 Advanced Tips and Tricks. 209

� CHAPTER 10Lines, Lengths, and Areas. 261

� CHAPTER 11Advanced Geocoding Topics. 285

PART 4� � � Appendixes
� APPENDIX AFinding the Data You Want. 315

� APPENDIX BGoogle Maps API. 323

� INDEX. 351

v

7079ch00FM.qxd 7/27/06 3:18 PM Page v

7079ch00FM.qxd 7/27/06 3:18 PM Page vi

Contents

Foreword. xv

About the Authors. xix

About the Technical Reviewer. xxi

Acknowledgments. xxiii

PART 1� � � Your First Google Maps

� CHAPTER 1 Introducing Google Maps. 3

KML: Your First Map. 3

Wayfaring: Your Second Map. 5

Adding the First Point. 6

Adding the Flight Route. 7

Adding the Destination Point. 8

Adding a Driving Route. 9

WhatÕs Next?. 10

� CHAPTER 2 Getting Started. 13

The First Map. 13

Keying Up. 13

Examining the Sample Map. 15

Specifying a New Location. 16

Separating Code from Content. 18

Cleaning Up. 20

Basic Interaction. 21

Using Map Control Widgets. 21

Creating Markers. 21

Opening Info Windows. 23

A List of Points. 26

Using Arrays and Objects. 26

Iterating. 28

Summary. 29

vii

7079ch00FM.qxd 7/27/06 3:18 PM Page vii

� CHAPTER 3 Interacting with the User and the Server. 31

Going on a Treasure Hunt. 32

Creating the Map and Marking Points. 33

Starting the Map. 33

Listening to User Events. 35

Asking for More Information with an Info Window. 37

Creating an Info Window on the Map. 38

Embedding a Form into the Info Window. 39

Avoiding an Ambiguous State. 44

Controlling the Info Window Size. 46

Using GoogleÕs Ajax Object. 48

Saving Data with GXmlHttp. 49

Parsing the XML Document Using DOM Methods. 54

Retrieving Markers from the Server. 57

Adding Some Flair. 59

Summary. 62

� CHAPTER 4 Geocoding Addresses. 63

Creating an XML File with the Address Data. 63

Using Geocoding Web Services. 65

Requirements for Consuming Geocoding Services. 66

The Google Maps API Geocoder. 67

The Yahoo Geocoding API. 75

Geocoder.us. 80

Geocoder.ca. 83

Services for Geocoding Addresses Outside GoogleÕs Coverage. . . . 85

Caching Lookups. 86

Building a Store Location Map. 90

Summary. 93

PART 2� � � Beyond the Basics

� CHAPTER 5 Manipulating Third-Party Data. 97

Using Downloadable Text Files. 97

Downloading the Database. 98

Parsing CSV Data. 101

Optimizing the Import. 102

Using Your New Database Schema. 106

� CONTENTSviii

7079ch00FM.qxd 7/27/06 3:18 PM Page viii

Screen Scraping. 113

A Scraping Example. 114

Screen Scraping Considerations. 117

Summary. 118

� CHAPTER 6 Improving the User Interface. 119

CSS: A Touch of Style. 119

Maximizing Your Map. 120

Adding Hovering Toolbars. 121

Creating Collapsible Side Panels. 124

Scripted Style. 126

Switching Up the Body Classes. 126

Resizing with the Power of JavaScript. 129

Populating the Side Panel. 131

Getting Side Panel Feedback. 134

Warning, Now Loading. 136

Data Point Filtering. 139

Showing and Hiding Points. 140

Discovering Groupings. 140

Creating Filter Buttons. 141

Summary. 143

� CHAPTER 7 Optimizing and Scaling for Large Data Sets. 145

Understanding the Limitations. 145

Streamlining Server-Client Communications . 146

Optimizing Server-Side Processing. 148

Server-Side Boundary Method. 149

Server-Side Common Point Method. 155

Server-Side Clustering. 161

Custom Detail Overlay Method. 167

Custom Tile Method. 176

Optimizing the Client-Side User Experience . 186

Client-Side Boundary Method. 187

Client-Side Closest to a Common Point Method. 188

Client-Side Clustering. 191

Further Optimizations. 196

Summary. 198

� CONTENTS ix

7079ch00FM.qxd 7/27/06 3:18 PM Page ix

� CHAPTER 8 WhatÕs Next for the Google Maps API?. 199

Driving Directions. 199

Integrated Google Services. 200

KML Data. 202

More Data Layers. 202

Beyond the Enterprise. 204

Interface Improvements. 204

Summary. 205

PART 3� � � Advanced Map Features
and Methods

� CHAPTER 9 Advanced Tips and Tricks. 209

Debugging Maps. 209

Interacting with the Map from the API. 210

Helping You Find Your Place. 211

Force Triggering Events with GEvent. 212

Creating Your Own Events. 214

Creating Map Objects with GOverlay. 214

Choosing the Pane for the Overlay. 214

Creating a Quick Tool Tip Overlay. 216

Creating Custom Controls. 220

Creating the Control Object. 222

Creating the Container. 222

Positioning the Container. 222

Using the Control. 223

Adding Tabs to Info Windows. 223

Creating a Tabbed Info Window. 224

Gathering Info Window Information and Changing Tabs. 226

Creating a Custom Info Window. 226

Creating the Overlay Object and Containers. 232

Drawing a LittleInfoWindow. 232

Implementing Your Own Map Type, Tiles, and Projection. 237

GMapType: Gluing It Together. 237

GProjection: Locating Where Things Are. 238

GTileLayer: Viewing Images. 244

The Blue Marble Map: Putting It All Together. 247

Summary. 258

� CONTENTSx

7079ch00FM.qxd 7/27/06 3:18 PM Page x

� CHAPTER 10Lines, Lengths, and Areas. 261

Starting Flat. 261

Lengths and Angles. 262

Areas. 263

Moving to Spheres. 266

The Great Circle. 266

Great-Circle Lengths. 268

Area on a Spherical Surface. 269

Working with Polylines. 274

Building the Polylines Demo. 274

Expanding the Polylines Demo. 280

What About UTM Coordinates?. 281

Running Afoul of the Date Line. 283

Summary. 284

� CHAPTER 11Advanced Geocoding Topics. 285

Where Does the Data Come From?. 285

Sample Data from Government Sources. 286

Sources of Raw GIS Data. 289

Geocoding Based on Postal Codes. 290

Grabbing the TIGER/Line by the Tail. 294

Understanding and Defining the Data. 295

Parsing and Importing the Data. 299

Building a Geocoding Service. 305

Summary. 311

PART 4� � � Appendixes

� APPENDIX AFinding the Data You Want. 315

Knowing What to Look For: Search Tips. 315

Finding the Information. 315

Specifying Search Terms. 316

Watching for Errors. 316

The Cat Came Back: Revisiting the TIGER/Line. 316

More on Airports. 318

The Government Standard: The Geonames Data. 319

Shake, Rattle, and Roll: The NOAA Goldmine. 319

� CONTENTS xi

7079ch00FM.qxd 7/27/06 3:18 PM Page xi

For the Space Aficionado in You. 321

Crater Impacts. 321

UFO/UAP Sightings. 322

� APPENDIX BGoogle Maps API. 323

class GMap2. 323

GMap2 Constructor. 323

GMap2 Methods. 324

class GMapOptions. 328

GMapOptions Properties. 328

enum GMapPane. 328

GMapPane Constants. 329

class GKeyboardHandler. 329

GKeyboardHandler Bindings. 329

GKeyboardHandler Constructor. 329

interface GOverlay. 329

GOverlay Constructor. 330

GOverlay Static Method. 330

GOverlay Abstract Methods. 330

class GInfoWindow. 330

GInfoWindow Methods. 330

GInfoWindow Event. 331

class GInfoWindowTab. 331

GInfoWindowTab Constructor. 331

class GInfoWindowOptions. 331

GInfoWindowOptions Properties. 331

class GMarker. 331

GMarker Constructor. 332

GMarker Methods. 332

GMarker Events. 332

class GMarkerOptions. 333

GMarkerOptions Properties. 333

class GPolyline. 333

GPolyline Constructor. 333

GPolyline Methods. 333

GPolyline Event. 334

class GIcon. 334

GIcon Constructor. 334

GIcon Constant. 334

GIcon Properties. 334

� CONTENTSxii

7079ch00FM.qxd 7/27/06 3:18 PM Page xii

class GPoint. 335

GPoint Constructor. 335

GPoint Properties. 335

GPoint Methods. 335

class GSize. 335

GSize Constructor. 336

GSize Properties. 336

GSize Methods. 336

class GBounds. 336

GBounds Constructor. 336

GBounds Properties. 336

GBounds Methods. 336

class GLatLng. 337

GLatLng Constructor. 337

GLatLng Methods. 337

GLatLng Properties. 338

class GLatLngBounds. 338

GLatLngBounds Constructor. 338

GLatLngBounds Methods. 338

interface GControl. 339

GControl Constructor. 339

GControl Methods. 339

class GControl. 339

GControl Constructors. 339

class GControlPosition. 339

GControlPosition Constructor. 340

enum GControlAnchor. 340

GControlAnchor Constants. 340

class GMapType. 340

GMapType Constructor. 340

GMapType Methods. 340

GMapType Constants. 341

GMapType Event. 341

class GMapTypeOptions. 341

GMapTypeOptions Properties. 342

interface GTileLayer. 342

GTileLayer Constructor. 342

GTileLayer Methods. 342

GTileLayer Event. 343

� CONTENTS xiii

7079ch00FM.qxd 7/27/06 3:18 PM Page xiii

class GCopyrightCollection. 343

GCopyrightCollection Constructor. 343

GCopyrightCollection Methods. 343

GCopyrightCollection Event. 343

class GCopyright. 343

GCopyright Constructor. 343

GCopyright Properties. 344

interface GProjection. 344

GProjection Methods. 344

class GMercatorProjection. 344

GMercatorProjection Constructor. 344

GMercatorProjection Methods. 345

namespace GEvent. 345

GEvent Static Methods. 345

GEvent Event. 346

class GEventListener. 346

namespace GXmlHttp. 346

GXmlHttp Static Method. 346

namespace GXml. 346

GXml Static Methods. 347

class GXslt. 347

GXslt Static Methods. 347

namespace GLog. 347

GLog Static Methods. 347

enum GGeoStatusCode. 347

GGeoStatusCode Constants. 348

class GClientGeocoder. 348

GClientGeocoder Constructor. 348

GClientGeocoder Methods. 348

class GGeocodeCache. 348

GGeocodeCache Constructor. 349

GGeocodeCache Methods. 349

class GFactualGeocodeCache. 349

GFactualGeocodeCache Constructor. 349

GFactualGeocodeCache Method. 349

Functions. 349

� INDEX. 351

� CONTENTSxiv

7079ch00FM.qxd 7/27/06 3:18 PM Page xiv

Foreword

In the Beginning. . .
In the history of the Internet, 2005Ð2006 will be remembered as the year when online mapping
finally came of age. Prior to 2005, MapQuest and other mapping services allowed you to look
up directions, search for locations, and map businesses, but these searches were limited, usu-
ally to the companies the services had partnered with, so you couldnÕt search for any location.
On February 8, 2005, Google changed all that. As it does with many of its services, Google qui-
etly released the beta of Google Maps to its Labs incubator (http://labs.google.com) and let
word-of-mouth marketing promote the new service.

By all accounts, Google Maps was an instant hit. It was the first free mapping service to
provide satellite map views of any location on the earth, allowing anyone to look for familiar
places. This started the ÒI can see my house from hereÓ trend, and set the blogosphere abuzz
with links to Google Maps locations around the world.

Like other mapping services, Google Maps offered directions, city and town mapping,
and local business searches. However, what the Google Maps engineers buried within its
code was something that quickly set it apart from the rest. Although unannounced and pos-
sibly unplanned, they provided the means to manipulate the code of Google Maps to plot
your own locations. Moreover, you could combine this base mapping technology with an
external data source to instantly map many location-based points of information. And all of
this could be done on privately owned domains, seemingly independent of Google itself.

At first, mapping ÒhackersÓ unlocked this functionality, just as video gamers hack into
games by entering simple cheat codes. They created their own mapping services using Google
Maps and other sources. One of the first these was Housingmaps.com, which combined the
craigslist.org housing listings with a searchable Google Maps interface. Next came Adrian
HolovatyÕs chicagocrime.org , which offered a compelling way to view crime data logged by the
Chicago Police Department. These home-brewed mapping applications were dubbed Òhacks,Ó
since Google had not sanctioned the use of its code in external domains on the Web.

The major change came in June 2005, when Google officially introduced the Google Maps
API, which is the foundation for this book. By releasing this API, Google allowed programmers
the opportunity to build an endless array of applications on top of Google Maps. Hundreds of
API keys were registered immediately after the announcement, and many sites integrating
Google Maps appeared within days. The map mashup was born.

The Birth of the Google Maps Mania Blog
The Google Maps labs beta site had been public for barely a month when I tried it for the first
time. I was fascinated. While combing through the blogosphere looking for more information,
I started to see a trend toward Google Maps hacks, how-to sites, Firefox extensions, and web-
sites indexing specific satellite images. I thought that others could benefit from an aggregation
of all of these ideas into one themed blog. Thus, my Google Maps Mania blog was born.

xv

7079ch00FM.qxd 7/27/06 3:18 PM Page xv

Google Maps Mania is more accurately described as a Òmeta-site,Ó as host Leo Laporte pointed
out when I was a guest on his NPR G4techTV radio show in November 2005.

April 13, 2005, saw these as my first posts:

Title: Google Maps Mania

If youÕre like me you were absolutely floored when Google came out with the Google
Maps service. Sure, itÕs just another mapping service. Until you realize itÕs full potential.
The ability to toggle between regular street/road maps and a satellite view is unreal. IÕve
started to see a lot of buzz around the blogging community about Google Maps so IÕve
decided to help you keep up with the Google Maps related sites, blogs and tools that are
cropping up. Stay tuned.

Title: Google Sightseeing

The first Google Maps related site of note is Google Sightseeing. This blog tracks interest-
ing satellite shots as submitted by its visitors, then organizes them by interest area like
buildings, natural landmarks and stadiums. ItÕs a pretty nifty site. Google Sightseeing even
posted my suggestion of TorontoÕs Rogers Centre (Skydome) and the CN Tower!

Title: Flickr Memory Maps

HereÕs a Flickr group that took off fast. Memory Maps is a Flickr group that contains maps
with captions describing memories they have of those areas or specific notes about differ-
ent areas. Kind of cool.

Title: Make your own multimedia Google map

Google Blogoscoped tipped me off on this link. Seems Engadget has a page which gives
some pretty good directions on how to create your own annotated multimedia Google
map. There is some pretty serious direction here which includes inserting pictures and
movies from the annotations. IÕd like to see an example of this.

Title: My GMaps

myGmaps enables you to create, save and host custom data files and display them with
Google Maps. Create push-pin spots on any map of your choice. Mark your house, where
an event will be held, or the route of a fun-run as a few examples. Then you can publish
the map that youÕve created to your own website.

These postings represented an interesting cross-section of the ideas, concepts, and web-
sites that I had come across in the two short months since Google Maps came to the Web. In
the year between the start of Google Maps Mania and the release of the second-generation API
(which this book is based on) in April 2006, I have made over 900 posts and attracted more than
6,000 daily readers to the blog, including the architects of the API itself. IÕve been Slashdotted,
Dug (at Digg), and linked to from the New York Timessite, as well as the sites of hundreds of
other mainstream papers and magazines. In June 2006, Google arranged for my entire family to
travel across the country so I could speak at the Google Geo Developer Day in advance of the
Where 2.0 conference.

� FOREWORDxvi

7079ch00FM.qxd 7/27/06 3:18 PM Page xvi

So many interesting mashups have been created using the Google Maps API that itÕs
becoming impossible to keep up with all of them. I liken this to the early days of the Web when
search directories began to manually catalog new web pages as they came online. The volume
of new sites quickly became too huge to handle manually, and Google itself was born.

You can see why the Google Maps API offers the key for the next killer apps on the Web. It
has been the missing link to take the Web to the next level.

This book will provide you the means to take part in this evolution of the Web. I hope to be
posting about the interesting and unique map creations that you build after reading this book.
Your creations will inspire others to do similar things, and together, we will continue to grow
the Internet, one mapping application at a time. Let me know if you build something cool!

Mike Pegg
Google Maps Mania (http://www.gmapsmania.com)

� FOREWORD xvii

7079ch00FM.qxd 7/27/06 3:18 PM Page xvii

7079ch00FM.qxd 7/27/06 3:18 PM Page xviii

About the Authors

� MICHAEL PURVISis a Mechatronics Engineering student at the
University of Waterloo, in Ontario. He is a mostly self-taught pro-
grammer. Prior to discovering PHP, he was busy making a LEGO¨
Mindstorms kit play Connect 4. Currently, he maintains an active
community site for classmates, built mostly from home-brewed
extensions to PunBB and MediaWiki.

He has written about CSS for Position Is Everything, and occa-
sionally participates in the css-discuss mailing list. He particularly
enjoys those clever layouts that mix negative margins, relative posi-
tioning, and bizarre float tricks to create fiendish, cross-browser,
flexible-width concoctions. These and other nontechnical topics

are discussed on his weblog at uwmike.com.
Offline, he enjoys cooking, cycling, and social dancing. He has worked with We-Create, Inc.

on a number of PHP-based projects, and has a strong interest in independent web standards.

� JEFFREY SAMBELLSis a graphic designer and self-taught web appli-
cations developer best known for his unique ability to merge the
visual world of graphics with the mental realm of code. With a
Bachelor of Technology degree in Graphic Communications Man-
agement along with a minor in Multimedia, Jeffrey was originally
trained for the traditional paper-and-ink printing industry, but he
soon realized the world of pixels and code was where his ideas
would prosper. In late 1999, he cofounded We-Create, Inc., an Inter-
net software company based in Waterloo, Ontario, which began
many long nights of challenging and creative innovation. Currently,
as Director of Research and Development for We-Create, Jeffrey is

responsible for investigating new and emerging Internet technologies and integrating them using
web standards-compliant methods. In late 2005, he also became a Zend Certified Engineer.

When not playing at the office, Jeffrey enjoys a variety of hobbies from photography to
woodworking. When the opportunity arises, he also enjoys floating in a canoe on the lakes of
Algonquin Provincial Park or going on an adventurous, map-free, drive with his wife. Jeffrey
also maintains a personal website at JeffreySambells.com, where he shares thoughts, ideas,
and opinions about web technologies, photography, design, and more. He lives in Ontario,
Canada, eh, with his wife, Stephanie, and their little dog, Milo.

xix

7079ch00FM.qxd 7/27/06 3:18 PM Page xix

� CAMERON TURNERhas been programming computers since his first
VIC 20 at age 7. He has been developing interactive websites since
1994. In 1999, he cofounded We-Create, Inc., which specializes in
Internet software development. He is now the companyÕs Chief
Technology Officer. Cam obtained his Honors degree in Computer
Science from the University of Waterloo with specialization in
applied cryptography, database design, and computer security.

Cam lives in CanadaÕs technology capital of Waterloo, Ontario,
with his wife, Tanya, son Owen, and dog Katie. His hobbies include
biking, hiking, water skiing, and painting. He maintains a personal
blog at CamTurner.com, discussing nontechnical topics, thoughts,
theories, and family life.

� ABOUT THE AUTHORSxx

7079ch00FM.qxd 7/27/06 3:18 PM Page xx

About the Technical Reviewer

� TERRILL DENTis enrolled in Honors Mathematics at the University of
Waterloo. His major interests center around Internet culture, twentieth
century history, and economic theory. Terrill.ca is home to his weblog,
and MapLet.ca is the front for his web application ventures, where he
lets his acute attention to detail show through. Apart from work, he busies
himself with fine arts, cycling, and an occasional novel.

xxi

7079ch00FM.qxd 7/27/06 3:18 PM Page xxi

7079ch00FM.qxd 7/27/06 3:18 PM Page xxii

Acknowledgments

The authors would like to thank Mike Pegg of Google Maps Mania for giving Apress our names
when contacted about doing a book on Google Maps. This book would not have been possible
without his encouragement, support, generosity, and friendship.

Thanks to Terrill for finding the errors of our bleary-eyed coding sessions and helping make
this book what it is today.

Thanks to Jason, Elizabeth, Marilyn, Katie, Julie, and the rest of the team at Apress. We hope
that working with us has been as much fun for you as working with you was for us.

xxiii

7079ch00FM.qxd 7/27/06 3:18 PM Page xxiii

7079ch00FM.qxd 7/27/06 3:18 PM Page xxiv

Your First
Google Maps

P A R T 1

� � �

7079ch01.qxd 7/25/06 1:24 PM Page 1

7079ch01.qxd 7/25/06 1:24 PM Page 2

Introducing Google Maps

ItÕs hard to argue that Google Maps hasnÕt had a fundamental effect on the mapping world.
While everyone else was still doing grainy static images, Google developers quietly developed
the slickest interface since Gmail. Then they took terabytes of satellite imagery and road data,
and just gave it all away for free.

WeÕre big fans of Google Maps and excited to get started here. WeÕve learned a lot about
the Google Maps API since it was launched, and even more during the time spent writing and
researching for this book. Over the course of the coming chapters, youÕre going to move from
simple tasks involving markers and geocoding to more advanced topics, such as how to acquire
data, present many data points, and provide a useful and attractive user interface.

A lot of important web technologies and patterns have emerged in parallel with the Google
Maps API. But whether you call it Ajax or Web 2.0 is less important than what it means: that
the little guy is back.

You donÕt need an expensive development kit to use the Google Maps API. You donÕt need
a computer science degree, or even a lot of experience. You just need a feel for whatÕs important
data and an idea of what you can do to present it in a visually persuasive way.

We know youÕre eager to get started on a map project, but before we actually bust out the
JavaScript, we wanted to show you two simple ways of creating ultra-quickie maps: using KML
files and through the Wayfaring map site.

Using either of these approaches severely limits your ability to create a truly interactive
experience, but no other method will give you results as quickly.

KML: Your First Map
The map weÕre working on here is actually Google Maps itself. In June 2006, Google announced
that the official maps site would support the plotting of KML files. You can now simply plug
a URL into the search box, and Google Maps will show whatever locations are contained in the
file specified by the URL. We arenÕt going to go in depth on this, but weÕve made a quick exam-
ple to show you how powerful the KML method is, even if it is simple.

� NoteKML stands for Keyhole Markup Language, which is a nod to both its XML structure and Google
EarthÕs heritage as an application called Keyhole. Keyhole was acquired by Google late in 2004.

3

C H A P T E R 1

� � �

7079ch01.qxd 7/25/06 1:24 PM Page 3

We created a file called toronto.kml and placed the contents of Listing 1-1 in it. The paragraph
blurbs were borrowed from Wikipedia, and the coordinates were discovered by manually find-
ing the locations on Google Maps.

Listing 1-1. A Sample KML File

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.google.com/earth/kml/2">
<Document>

<name>toronto.kml</name>
<Placemark>

<name>CN Tower</name>
<description>The CN Tower (Canada's National Tower, Canadian National Tower),
at 553.33 metres (1,815 ft., 5 inches) is the tallest freestanding structure on land.
It is located in the city of Toronto, Ontario, Canada, and is considered the
signature icon of the city. The CN Tower attracts close to two million visitors
annually.

http://en.wikipedia.org/wiki/CN_Tower</description>
<Point>

<coordinates>-79.386864,43.642426</coordinates>
</Point>

</Placemark>
</Document>
</kml>

In the actual file (located at http://googlemapsbook.com/chapter1/kml/toronto.kml),
we included two more Placemarkelements, which point to other well-known buildings in
Toronto. To view this on Google Maps, paste that URL into the Google Maps search field. Alter-
natively, you can just visit this link:

http://maps.google.com/maps?f=q&hl=en&q=http://googlemapsbook.com/chapter1/kml/
toronto.kml

You can see the results of this in Figure 1-1.

CHAPTER 1� INTRODUCING GOOGLE MAPS4

7079ch01.qxd 7/25/06 1:24 PM Page 4

Figure 1-1.A custom KML data file being displayed at maps.google.com

Now, is that a quick result or what? Indeed, if all you need to do is show a bunch of locations,
itÕs possible that a KML file will serve your purpose. If youÕre trying to link to your favorite fish-
ing spots, you could make up a KML file, host it somewhere for free, and be finished.

But that wouldnÕt be any fun, would it? After all, as cool as the KML mapping is, it doesnÕt
actually offer any interactivity to the user. In fact, most of the examples youÕll work through in
Chapter 2 are just replicating the functionality that Google provides here out of the box. But
once you get to Chapter 3, youÕll start to see things that you can do only when you harness the
full power of the Google Maps API.

Before moving on, though, weÕll take a look at one other way of getting a map online
quickly.

Wayfaring: Your Second Map
A number of services out there let you publish free maps of quick, plotted-by-hand data. One
of these, which weÕll demonstrate here, is Wayfaring.com (Figure 1-2). Wayfaring has received
attention and praise for its classy design, community features (such as commenting and shared
locations), and the fact that itÕs built using the popular Ruby on Rails framework.

CHAPTER 1� INTRODUCING GOOGLE MAPS5

7079ch01.qxd 7/25/06 1:24 PM Page 5

Figure 1-2.Wayfaring.com home page

Wayfaring is a mapping service that uses the Google Maps API and allows users to quickly
create maps of anything they would like. For example, some people have made maps of their
vacations; others have identified interesting aspects of their hometown or city. As an example,
weÕll walk you through making a quick map of an imaginary trip to the Googleplex, in Moun-
tain View, California.

Point your browser at http://www.wayfaring.com and follow the links to sign up for an
account. Once youÕve created and activated your account, you can begin building your map.
Click the Create link.

Adding the First Point
WeÕll start by adding the home airport for our imaginary journey. In our case, that would be
Pearson International Airport in Toronto, Ontario, Canada, but you could use the one closest
to you. Since Pearson is an international location (outside the United States), we need to drag
and zoom the map view until we find it. If youÕre in the United States, you could use instead
the nifty Jump To feature to search by text string. Figure 1-3 shows Pearson nicely centered
and zoomed.

CHAPTER 1� INTRODUCING GOOGLE MAPS6

7079ch01.qxd 7/25/06 1:24 PM Page 6

Figure 1-3.Lester B. Pearson International Airport, Toronto, Ontario

Once youÕve found your airport, you can click Next and name the map. After clicking
ahead, you should be back at the main Map Editor screen.

Select Add a Waypoint from the list of options on the right. YouÕll be prompted to name
the waypoint. WeÕll call ours ÒLester B Pearson International Airport.Ó However, as we type, we
find that Wayfaring is suggesting this exact nam e. This means that someone else on some other
map has already used this waypoint, and the system is giving us a choice of using their point
or making one of our own. ItÕs a safe bet that most of the airports you could fly from are already
in Wayfaring, so feel free to use the suggested one if you would like. For the sake of complete-
ness, weÕll quickly make our own. Click Next to continue.

The next two screens ask you to tag and describe this point in order to make your map
more searchable for other members. WeÕll add the tags Òairport Toronto Ontario CanadaÓ and
give it a simple description. Finally, click Done to commit the point to the map, which returns
you to the Map Editor screen.

Adding the Flight Route
The next element weÕre going to add to our map is a route. A route is a line made up of as
many points as you would like. WeÕll use two routes in this example. The first will be a straight
line between the two airports to get a rough idea of the distance the plane will have to travel to
get us to GoogleÕs headquarters. The second will be used to plot the driving path we intend to
take between the San Francisco airport and the Googleplex.

To begin, click Add a Route, name the route (something like Òairplane tripÓ), and then
click your airport. A small, white dot appears on the place you clicked. This is the first point on
your line. Now zoom out, scroll over to California, and zoom in on San Francisco. The airport

CHAPTER 1� INTRODUCING GOOGLE MAPS7

7079ch01.qxd 7/25/06 1:24 PM Page 7

weÕll be landing at is on the west side of the bay. Click the airport here, too. As you can see in
Figure 1-4, a second white dot appears on the airport and a blue line connects the two points.
You can see how far your flight was on the right side of the screen, underneath the route label.
Wow, our flight seems to have been over 2000 miles! If you made a mistake and accidentally
clicked a few extra times in the process of getting to San Francisco, you can use the Undo Last
option. Otherwise, click Save.

Figure 1-4.Our flight landing at San Francisco International Airport

Adding the Destination Point
Now that youÕre in San Francisco, letÕs figure out how to get to the Googleplex directly. Click
Add a Waypoint. Our destination is Google, so weÕve called the new point ÒThe GoogleplexÓ
and used the address box feature to jump directly to 1600 Amphitheatre Pky, Mountain View,
CA 94043. Wayfaring is able to determine latitude and longitude from an address via a process
called geocoding, which youÕll be seeing a lot more of in Chapter 4.

To confirm youÕre in the right place, click the Sat button on the top-right corner of the
map to switch it over to satellite mode. You should see something close to Figure 1-5.

CHAPTER 1� INTRODUCING GOOGLE MAPS8

7079ch01.qxd 7/25/06 1:24 PM Page 8

Figure 1-5.The Googleplex

Excellent! Save that waypoint.

Adding a Driving Route
Next, letÕs figure out how far of a drive we have ahead of us. Routes donÕt really have a starting
and ending point in Wayfaring from a visual point of view, so we can start our route from the
Googleplex and work our way backwards. Switch back into map (or hybrid) mode so you can
see the roads more clearly. From the Map Editor screen, select Add a Route and click the point
you just added. Use 10 to 20 dots to carefully trace the trip from Mountain View back up the
Bayshore Freeway (US Highway 101) to the airport. By our tracing, we end up with about 23
miles of fun driving on this California highway, as shown in Figure 1-6.

CHAPTER 1� INTRODUCING GOOGLE MAPS9

7079ch01.qxd 7/25/06 1:24 PM Page 9

Figure 1-6.The drive down the Bayshore Freeway to the Googleplex

ThatÕs it. You can use the same principles to make an annotated map of your vacation or
calculate how far youÕre going to travel, and best of all, itÕs a snap to share it. To see our map
live, visit http://www.wayfaring.com/maps/show/17131 .

Of course, since this is a programming book, youÕre probably eager to dig into the code
and make something really unique. Wayfaring may be nice, but the whole point of a mashup is
to automate the process of getting a lot of data combined together.

� Tip Mashupis a term that originates from DJs and other musicians who create new compositions by
ÒmashingÓ together samples from existing songs. A classic example of this is The Grey Album, which joins
the a capella versions of tracks from Jay-ZÕs The Black Albumwith unauthorized clips from The White
Album, by The Beatles. In the context of this book,mashuprefers to the mashing of data from one source
with maps from Google.

WhatÕs Next?
Now that these examples are out of the way, we hope youÕre eager to learn how to build your
own mashups from the ground up. By the end of Part 1 of this book, youÕll have the skills to do
everything youÕve just done on Wayfaring (except the route lines and distances, which are cov-
ered in Chapter 10) using JavaScript and XHTML. By the bookÕs conclusion, youÕll have learned
most of the concepts needed to build your own Wayfaring clone!

CHAPTER 1� INTRODUCING GOOGLE MAPS10

7079ch01.qxd 7/25/06 1:24 PM Page 10

So what exactly is to come? WeÕve divided the book into three parts and two appendixes.
Part 1 goes through Chapter 4 and deals with the basics that a hobbyist would need to get started.
YouÕll make a map, add some custom pins, and geocode a set of data using freely available
services. Part 2 (Chapters 5 through 8) gets into more map development topics, like building
a usable interface, dealing with extremely large groups of points, and finding sources of raw
information you may need to make your professional map ideas a reality. Part 3 (Chapters 9
through 11) dives into advanced topics: building custom map overlays such as your own info
window and tooltip, creating your own map tiles and projections, using the spherical equations
necessary to calculate surface areas on the earth, and building your own geocoder from scratch.
Finally, one appendix provides a reference guide to the Google Maps version 2 API, and another
points to a few places where you can find neat data for extending the examples here, and to
inspire your own projects.

We hope you enjoy!

CHAPTER 1� INTRODUCING GOOGLE MAPS11

7079ch01.qxd 7/25/06 1:24 PM Page 11

7079ch01.qxd 7/25/06 1:24 PM Page 12

Getting Started

In this chapter, youÕll learn how to create your first Google map project, plot some markers,
and add a bit of interactivity. Because JavaScript plays such a central role in controlling the
maps, youÕll also start to pick up a few essentials about that language along the way.

In this chapter, youÕll see how to do the following:

¥ Get off the ground with a basic map and a Google Maps API key.

¥ Separate the map applicationÕs JavaScript functions, data, and XHTML.

¥ Unload finished maps to help browsers free their memory.

¥ Create map markers and respond to clicks on them with an information pop-up.

The First Map
In this section, youÕll obtain a Google Maps API key, and then begin experimenting with it by
retrieving GoogleÕs starter map.

Keying Up
Before you start a Google Maps web application, you need sign up for a Google Maps API key.
To obtain your key, you must accept the Google Maps API Terms of Use, which stipulate, among
other things, that you must not steal GoogleÕs imagery, obscure the Google logo, or hold Google
responsible for its software. Additionally, youÕre prevented from creating maps that invade pri-
vacy or facilitate illegal activities.

Google issues as many keys as you need, but separate domains must apply for a separate
key, as each one is valid for only a specific domain and subdirectory within that domain. For
your first key, youÕll want to give Google the root directory of your domain or the space in which
youÕre working. This will allow you to create your project in any subdirectory within your domain.
Visit http://www.google.com/apis/maps/signup.html (Figure 2-1) and submit the form to get
your key. Throughout this book, nearly all of the examples will require you to include this key
in the JavaScript <script> element for the Google Maps API, as weÕre about to demonstrate in
Listing 2-1.

13

C H A P T E R 2

� � �

7079ch02.qxd 7/25/06 1:26 PM Page 13

Figure 2-1.Signing up for an API key. Check the box, and then enter the URL of your webspace.

� NoteWhy a key? Google has its reasons, which may or may not include seeing what projects are where,
which are the most popular, and which may be violating the terms of service. Google is not the only one that
makes you authenticate to use an API. Del.icio.us, Amazon, and others all provide services with APIs that
require you to first obtain a key.

When you sign up to receive your key, Google will also provide you with a very basic
Òstarter mapÓ to help familiarize you with the fundamental concepts required to integrate
a map into your website. WeÕll begin by dissecting and working with this starter code so you
can gain a basic understanding of whatÕs happening.

If you start off using GoogleÕs sample, your key is already embedded in the JavaScript.
Alternatively, you canÑas with all listingsÑgrab the source code from the bookÕs website at
http://googlemapsbook.com and insert your own key by hand.

Either way, save the code to a file called index.php . Your key is that long string of characters fol-
lowing key=. (Our key, in the case of this bookÕs website, isABQIAAAA33EjxkLYsh9SEveh_MphphQP1y�
R2bHJW2Brl_bW_l0KXsyt8cxTKO5Zz-UKoJ6IepTlZRxN8nfTRgw).

CHAPTER 2� GETTING STARTED14

7079ch02.qxd 7/25/06 1:26 PM Page 14

Examining the Sample Map
Once you have the file in Listing 2-1 uploaded to your webspace, check it out in a browser.
And ta-da, a map in action!

Listing 2-1. The Google Maps API Starter Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Google Maps JavaScript API Example</title>
<script src="http://maps.google.com/maps?file=api&v=2&key=ABQIAAAA�

33EjxkLYsh9SEveh_MphphQP1yR2bHJW2Brl_bW_l0KXsyt8cxTKO5Zz-UKoJ6Ie�
pTlZRxN8nfTRgw" type="text/javascript"></script>

<script type="text/javascript">

//<![CDATA[

function load() {
if (GBrowserIsCompatible()) {

var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}
}

//]]>
</script>

</head>

<body onload="load()" onunload="GUnload()">
<div id="map" style="width: 500px; height: 300px"></div>

</body>
</html>

In Listing 2-1, the container holding the map is a standard XHTML web page. A lot of the
listing here is just boilerplateÑstandard initialization instructions for the browser. However,
there are three important elements to consider.

First, the head of the document contains a critical script element. Its src attribute points
to the location of the API on GoogleÕs server, and your key is passed as a parameter:

<script src="http://maps.google.com/maps?file=api&v=2&key=YOUR_KEY_HERE"�
type="text/javascript"></script>

Second, the bodysection of the document contains a div called map:

<div id="map" style="width: 500px; height: 300px"></div>

CHAPTER 2� GETTING STARTED 15

7079ch02.qxd 7/25/06 1:26 PM Page 15

Although it appears empty, this is the element in which the map will sit. Currently, a style
attribute gives it a fixed size; however, it could just as easily be set it to a dynamic size, such as
width: 50%.

Finally, back in the head, thereÕs ascript element containing a short JavaScript, which is
triggered by the document bodyÕs onload event. ItÕs this code that communicates with GoogleÕs
API and actually sets up the map.

function load() {
if (GBrowserIsCompatible()) {

var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}
}

The first line is an if statement, which checks that the userÕs browser is supported by
Google Maps. Following that is a statement that creates a GMap2object, which is one of several
important objects provided by the API. The GMap2object is told to hook onto the map div , and
then it gets assigned to a variable called map.

� NoteKeen readers will note that weÕve already encountered another of GoogleÕs special API objects:
GLatLng. GLatLng, as you can probably imagine, is a pretty important class, that weÕre going to see a lot
more of.

After you have your GMap2object in a mapvariable, you can use it to call any of the GMap2
methods. The very next line, for example, calls the setCenter() method to center and zoom
the map on Palo Alto, California. Throughout the book, weÕll be introducing various methods
of each of the API objects, but if you need a quick reference while developing your web appli-
cations, you can use Appendix B of this book or view the Google Maps API reference (http://
www.google.com/apis/maps/documentation/) directly online.

Specifying a New Location
A map centered on Palo Alto is interesting, but itÕs not exactly groundbreaking. As a first attempt
to customize this map, youÕre going to specify a new location for it to center on.

For this example, weÕve chosen the Golden Gate Bridge in San Francisco, California
(Figure 2-2). ItÕs a large landmark and is visible in the satellite imagery provided on Google
Maps (http://maps.google.com). You can choose any starting point you like, but if you search
for ÒGolden Gate BridgeÓ in Google Maps, move the view slightly, and then click Link to This
Page, youÕll get a URL in your location bar that looks something like this:

http://maps.google.com/maps?f=q&ll=37.818361,-122.478032&spn=0.029969,0.05579

CHAPTER 2� GETTING STARTED16

7079ch02.qxd 7/25/06 1:26 PM Page 16

Figure 2-2.The Golden Gate Bridge satellite imagery from Google Maps

� CautionIf you use Google Maps to search for landmarks, the Link to This Page URL wonÕt immediately
contain the latitude and longitude variable but instead have a parameter containing the search terms. To also
include the latitude and longitude, you need to adjust the zoom level or move the map so that the link is no
longer to the default search position.

ItÕs clear that the URL contains three parameters, separated by ampersands:

f = q
ll = 37.818361, -122.478032
spn = 0.029969, 0.05579

The ll parameter is the important one youÕll use to center your map. Its value contains
the latitude and longitude of the center of the map in question. For the Golden Gate Bridge,
the coordinates are 37.82N and 122.48W.

CHAPTER 2� GETTING STARTED 17

7079ch02.qxd 7/25/06 1:26 PM Page 17

� NoteLatitudeis the number of degrees north or south of the equator, and ranges from Ð90 (South Pole)
to 90 (North Pole).Longitudeis the number of degrees east or west of the prime meridian at Greenwich, in
England, and ranges from Ð180 (westward) to 180 (eastward). There are several different ways you can
record latitude and longitude information. Google uses decimal notation, where a positive or negative num-
ber indicates the compass direction. The process of turning a street address into a latitude and longitude is
called geocoding, and is covered in more detail in Chapter 4.

You can now take the latitude and longitude values from the URL and use them to recen-
ter your own map to the new location. Fortunately, itÕs a simple matter of plugging the values
directly into the GLatLngconstructor.

Separating Code from Content
To further improve the cleanliness and readability of your code, you may want to consider
separating the JavaScript into a different file. Just as Cascading Style Sheets (CSS) should not
be mixed in with HTML, itÕs best practice to also keep JavaScript separated.

The advantages of this approach become clear as your project increases in size. With large
and complicated Google Maps web applications, you could end up with hundreds of lines of
JavaScript mixed in with your XHTML. Separating these out not only increases loading speeds,
as the browser can cache the JavaScript independently of the XHTML, but their removal also
helps prevent the messy and unreadable code that results from mixing XHTML with other
programming languages. Your eyes and your text editor will love you if they donÕt have to deal
with mixed XHTML and JavaScript at the same time.

In this case, youÕll actually take it one step further and also separate the marker data file
from the map functions file. This will allow you to easily convert the static data file to a dynami-
cally generated file in later chapters, without the need to touch any of the processing JavaScript.

To accommodate these changes, weÕve separated the web applicationÕs JavaScript functions,
data, and XHTML, putting them in separate files called index.php for the XHTML portion of
the page, map_functions.js for the behavioral JavaScript code, and map_data.phpfor the data
to plot on the map. Listing 2-2 shows the revised version of the index.php file.

Listing 2-2. Extrapolated index.php File

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"�
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<script src="http://maps.google.com/maps?file=api&v=2&key= �
ABQIAAAAfAb2RNhzPaf0W1mtifapBRI9caN7296ZHDcvjSpGbL7PxwkwBS�
ZidcfOwy4q2EZpjEJx3rc4Lt5Kg" type="text/javascript"></script>

<script src="map_data.php" type="text/javascript"></script>
<script src="map_functions.js" type="text/javascript"></script>

</head>

CHAPTER 2� GETTING STARTED18

7079ch02.qxd 7/25/06 1:26 PM Page 18

<body>
<div id="map" style="width: 500px; height: 300px"></div>

</body>
</html>

Listing 2-2 is the same basic HTML document as before, except that now there are two
extra script elements inside the head. Rather than referencing the external API, these refer-
ence localÑon the serverÑJavaScript files called map_data.phpand map_functions.js . For
now, youÕll leave the map_data.phpfile empty, but it will be used later in the chapter when we
demonstrate how to map an existing list of markers. The important thing to note here is that it
must be referenced first, before the map_functions.js file, so that the data is ÒavailableÓ to the
code in the map_functions.js file. Listing 2-3 shows the revised map_functions.js file.

Listing 2-3. Extrapolated map_functions.js File

var centerLatitude = 37.818361;
var centerLongitude = -122.478032;
var startZoom = 13;

var map;

function init()
{

if (GBrowserIsCompatible()) {
map = new GMap2(document.getElementById("map"));
var location = new GLatLng(centerLatitude, centerLongitude);
map.setCenter(location, startZoom);

}
}

window.onload = init;

Although the behavior is almost identical, the JavaScript code in Listing 2-3 has two
important changes:

¥ The starting center point for latitude, longitude, and start zoom level of the map are
stored in var variables at the top of the script, so it will be more straightforward to change
the initial center point the next time. You wonÕt need to hunt down a setCenter() call
thatÕs buried somewhere within the code.

¥ The initialization JavaScript has been moved out of the bodyof the XHTML and into the
map_functions.js file. Rather than embedding the JavaScript in the body of the XHTML,
you can attach a function to the window.onloadevent. Once the page has loaded, this
function will be called and the map will be initialized.

For the rest of the examples in this chapter, the index.php file will remain exactly as it is in
Listing 2-2, and you will need to add code only to the map_functions.js and map_data.phpfiles
to introduce the new features to your map.

CHAPTER 2� GETTING STARTED 19

7079ch02.qxd 7/25/06 1:26 PM Page 19

� CautionItÕs important to see the difference between init and init() . When you add the parentheses
after the function name, it means Òexecute it.Ó Without the parentheses, it means Ògive me a reference to it.Ó
When you assign a function to an event handler such as document.onload, you want to be very careful that
you donÕt include the parentheses. Otherwise, all youÕve assigned to the handler is the functionÕs return
value, probably anull .

Cleaning Up
One more important thing to do with your map is to be sure to correctly unload it. The extremely
dynamic nature of JavaScriptÕs variables means that correctly reclaiming memory (called garbage
collection) can be a tricky process. As a result, some browsers do it better than others.

Firefox and Safari both seem to struggle with this, but the worst culprit is Internet
Explorer. Even up to version 6, simply closing a web page is not enough to free all the memory
associated with its JavaScript objects. An extended period of surfing JavaScript-heavy sites such
as Google Maps could slowly consume all system memory until Internet Explorer is manually
closed and restarted.

Fortunately, JavaScript objects can be manually destroyed by setting them equal to null .
The Google Maps API now has a special function that will destroy most of the APIÕs objects,
which helps keep browsers happy. The function is GUnload(), and to take advantage of it is
a simple matter of hooking it onto the body.onunload event, as in Listing 2-4.

Listing 2-4. Calling GUnload() in map_functions.js

var centerLatitude = 37.818361;
var centerLongitude = -122.478032;
var startZoom = 13;

var map;

function init() {
if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));
var location = new GLatLng(centerLatitude, centerLongitude);
map.setCenter(location, startZoom);

}
}

window.onload = init;
window.onunload = GUnload;

ThereÕs no obvious reward for doing this, but itÕs an excellent practice to follow. As your
projects become more and more complex, they will eat up available memory at an increasing
rate. On the day that browsers are perfect, this approach will become a hack of yesterday. But
for now, itÕs a quiet way to improve the experience for all your visitors.

CHAPTER 2� GETTING STARTED20

7079ch02.qxd 7/25/06 1:26 PM Page 20

Basic Interaction
Centering the map is all well and good, but what else can you do to make this map more excit-
ing? You can add some user interaction.

Using Map Control Widgets
The Google Maps API provides five standard controls that you can easily add to any map:

¥ GLargeMapControl, the large pan and zoom control, which is used on maps.google.com

¥ GSmallMapControl, the mini pan and zoom control, which is appropriate for smaller maps

¥ GScaleControl, the control that shows the metric and imperial scale of the mapÕs current
center

¥ GSmallZoomControl, the two-button zoom control used in driving-direction pop-ups

¥ GMapTypeControl, which lets the visitor toggle between Map, Satellite, and Hybrid types

� Tip If youÕre interested in making your own custom controls, you can do so by extending the GControl
class and implementing its various functions. We may discuss this on the googlemapsbook.comblog, so be
sure to check it out.

In all cases, itÕs a matter of instantiating the control object, and then adding it to the map with
the GMap2objectÕs addControl() method. For example, hereÕs how to add the small map control,
which you can see as part of the next example in Listing 2-5:

map.addControl(new GSmallMapControl());

You use an identical process to add all the controls: simply pass in a new instance of the
controlÕs class.

� NoteWhat doesinstantiatingmean? In object-oriented programming, a class is like a blueprint for a type
of entity that can be created in memory. When you put newin front of a class name, JavaScript takes the
blueprint and actually creates a usable copy (an instance) of the object. ThereÕs only one GLatLngclass, but
you can instantiate as many GLatLngobjectsas you need.

Creating Markers
The Google Maps API makes an important distinction between creating a marker, or pin, and
adding the marker to a map . In fact, the map object has a general addOverlay() method, used
for both the markers and the white information bubbles.

In order to plot a marker (Figure 2-3), you need the following series of objects:

CHAPTER 2� GETTING STARTED 21

7079ch02.qxd 7/25/06 1:26 PM Page 21

¥ A GLatLngobject stores the latitude and longitude of the location of the marker.

¥ An optional GIconobject stores the image that visually represents the marker on the map.

¥ A GMarkerobject is the marker itself.

¥ A GMap2object has the marker plotted on it, using the addOverlay() method.

Figure 2-3.Marker plotted in the middle of the Golden Gate Bridge map

Does it seem like overkill? ItÕs less scary than it sounds. An updated map_functions.js is
presented in Listing 2-5, with the new lines marked in bold.

Listing 2-5. Plotting a Marker

var centerLatitude = 37.818361;
var centerLongitude = -122.478032;
var startZoom = 13;

var map;

function init()
{

if (GBrowserIsCompatible()) {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
var location = new GLatLng(centerLatitude, centerLongitude);
map.setCenter(location, startZoom);

CHAPTER 2� GETTING STARTED22

7079ch02.qxd 7/25/06 1:26 PM Page 22

var marker = new GMarker(location)
map.addOverlay(marker);

}
}

window.onload = init;
window.onunload = GUnload;

� CautionIf you try to add overlays to a map before setting the center, it will cause the API to give unpre-
dictable results. Be careful to setCenter() your GMap2object before adding any overlays to it, even if itÕs
just to a hard-coded dummy location that you intend to change again right away.

See what happened? We assigned the new GLatLngobject to a variable, and then we were
able to use it twice: first to center the map, and then a second time to create the marker.

The exciting part isnÕt creating one marker; itÕs creating many markers. But before we come
to that, we must quickly look at the Google Maps facility for showing information bubbles.

WHITHER THOU, GICON?

You can see that we didnÕt actually use aGIconobject anywhere in Listing 2-5. If we had one defined, it
would be possible to make the marker take on a different appearance, like so:

var marker = new GMarker(my_GLatLng, my_GIcon);

However, when the icon isnÕt specified, the API assumes the red inverted teardrop as a default. There is
a more detailed discussion of how to use the GIconobject in Chapter 3.

Opening Info Windows
ItÕs time to make your map respond to the user! For instance, clicking a marker could reveal
additional information about its location (Figure 2-4). The API provides an excellent method
for achieving this result: the info window. To know when to open the info window, however,
youÕll need to listen for a click event on the marker you plotted.

CHAPTER 2� GETTING STARTED 23

7079ch02.qxd 7/25/06 1:26 PM Page 23

Figure 2-4.An info window open over the Golden Gate Bridge

Detecting Marker Clicks

JavaScript is primarily an event-driven language. The init() function that youÕve been using
since Listing 2-3 is hooked onto the window.onloadevent. Although the browser provides many
events such as these, the API gives you a convenient way of hooking up code to various events
related to user interaction with the map.

For example, if you had a GMarkerobject on the map called marker, you could detect marker
clicks like so:

function handleMarkerClick() {
alert("You clicked the marker!");

}

GEvent.addListener(marker, 'click', handleMarkerClick);

ItÕs workable, but it will be a major problem once you have a lot of markers. Fortunately,
the dynamic nature of JavaScript yields a terrific shortcut here. You can actually just pass the
function itself directly to addListener() as a parameter:

GEvent.addListener(marker, 'click',
function() {

alert("You clicked the marker!");
}

);

Opening the Info Window

Chapter 3 will discuss the info window in more detail. The method weÕll demonstrate here is
openInfoWindowHtml(). Although you can open info windows over arbitrary locations on the

CHAPTER 2� GETTING STARTED24

7079ch02.qxd 7/25/06 1:26 PM Page 24

map, here youÕll open them above markers only, so the code can take advantage of a shortcut
method built into the GMarkerobject:

marker.openInfoWindowHtml(description);

Of course, the whole point is to open the info window only when the marker is clicked, so
youÕll need to combine this code with the addListener() function:

GEvent.addListener(marker, 'click',
function() {

marker.openInfoWindowHtml(description);
}

);

Finally, youÕll wrap up all the code for generating a pin, an event, and an info window into
a single function, called addMarker(), in Listing 2-6.

Listing 2-6. Creating a Marker with an Info Window

var centerLatitude = 37.818361;
var centerLongitude = -122.478032;
var description = 'Golden Gate Bridge';

var startZoom = 13;
var map;

function addMarker(latitude, longitude, description) {
var marker = new GMarker(new GLatLng(latitude, longitude));

GEvent.addListener(marker, 'click',
function() {

marker.openInfoWindowHtml(description);
}

);

map.addOverlay(marker);
}

function init() {
if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

addMarker(centerLatitude, centerLongitude, description);
}

}

window.onload = init;
window.onunload = GUnload;

CHAPTER 2� GETTING STARTED 25

7079ch02.qxd 7/25/06 1:26 PM Page 25

This is a nice clean function that does everything you need for plotting a pin with a click-
able information bubble. Now youÕre perfectly set up for plotting a whole bunch of markers on
your map.

A List of Points
In Listing 2-3, we introduced the variables centerLongitude and centerLatitude . Global vari-
ables like these are fine for a single centering point, but what you probably want to do is store
a whole series of values and map a bunch of markers all at once. Specifically, you want a list of
latitude and longitude pairs representing the points of the markers youÕll plot.

Using Arrays and Objects
To store the list of points, you can combine the power of JavaScriptÕs array and object constructs.
An array stores a list of numbered entities. An object stores a list of keyed entities, similar to
how a dictionary matches words to definitions. Compare these two lines:

var myArray = ['John', 'Sue', 'James', 'Edward'];
var myObject = {'John': 19, 'Sue': 21, 'James': 24, 'Edward': 18};

To access elements of the array, you must use their numeric indices. So, myArray[0] is
equal to 'John' , and myArray[3] is equal to 'Edward' .

The object, however, is slightly more interesting. In the object, the names themselvesare
the indices, and the numbers are the values. To look up how old Sue is, all you do is check the
value of myObject['Sue'] .

� NoteFor accessing members of an object, JavaScript allows both myObject['Sue'] and the alternative
notation myObject.Sue. The second is usually more convenient, but the first is important if the value of the
index you want to access is stored in anothervariable, for example,myObject[someName].

For each marker you plot, you want an object that looks like this:

var myMarker = {
'latitude': 37.818361,
'longitude': -122.478032,
'name': 'Golden Gate Bridge'

};

Having the data organized this way is useful because the related information is grouped as
ÒchildrenÓ of a common parent object. The variables are no longer just latitude and longitude Ñ
now they are myMarker.latitude and myMarker.longitude .

Most likely, for your application youÕll want more than one marker on the map. To proceed
from one to many, itÕs just a matter of having an array of these objects:

var myMarkers = [Marker1, Marker2, Marker3, Marker4];

CHAPTER 2� GETTING STARTED26

7079ch02.qxd 7/25/06 1:26 PM Page 26

Then you can cycle through the array, accessing the members of each object and plotting
a marker for each entity.

When the nesting is combined into one step (Figure 2-5), it becomes a surprisingly elegant
data structure, as in Listing 2-7.

Listing 2-7. A JavaScript Data Structure for a List of Locations

var markers = [
{

'latitude': 37.818361,
'longitude': -122.478032,
'name': 'Golden Gate Bridge'

},
{

'latitude': 40.6897,
'longitude': -74.0446,
'name': 'Statue of Liberty'

},
{

'latitude': 38.889166,
'longitude': -77.035307,
'name': 'Washington Monument'

}
];

Figure 2-5.A series of objects stored inside an array

As youÕll see in the next section, JavaScript provides some terrific methods for working
with data in this type of format.

� NoteIn this book, youÕll see primarily MySQL used for storing data permanently. Some people however,
have proposed the exact format in Figure 2-5 as an alternative to XML, calling it JSON, for JavaScript Object
Notation. While there are some advantages, JSONÕs plethora of punctuation can be intimidating to a less
technical person. You can find more information on JSON at http://json.org . WeÕll still be using a lot of
JSON-like structures for communicating data from the server to the browser.

CHAPTER 2� GETTING STARTED 27

7079ch02.qxd 7/25/06 1:26 PM Page 27

Iterating
JavaScript, like many languages, provides afor loopÑa way of repeating a block of code for
so many iterations, using a counter. One way of cycling through your list of points would be
a loop such as this:

for (id = 0; id < markers.length; id++) {
// create a marker at markers[id].latitude, markers[id].longitude

}

However, JavaScript also provides a much classier way of setting this up. ItÕs called afor in
loop. Watch for the difference:

for (id in markers) {
// create a marker at markers[id].latitude, markers[id].longitude

}

Wow. It automatically gives you back every index that exists in an array or object, without
needing to increment anything manually, or ever test boundaries. Clearly, youÕll want to use
a for in loop to cycle over the array of points.

Until now, the map_data.phpfile has been empty and youÕve been dealing mainly with the
map_functions.js file. To show a list of markers, you need to include the list, so this is where
map_data.phpcomes in. For this chapter, youÕre not going to actually use any PHP, but the
intention is that you can populate that file from database queries or some other data store.
WeÕve named the file with the PHP extension so you can reuse the same base code in later
chapters without the need to edit everything and start over. For now, pretend the PHP file is
like any other normal JavaScript file and create your list of markers there. As an example, pop-
ulate your map_data.phpfile with the structure from Listing 2-7.

To get that structure plotted, itÕs just a matter of wrapping the marker-creation code in
a for in loop, as shown in Listing 2-8.

Listing 2-8. map_functions.js Modified to Use the Markers from map_data.php

var map;
var centerLatitude = -95.0446;
var centerLongitude = 40.6897;
var startZoom = 3;

function addMarker(longitude, latitude, description) {
var marker = new GMarker(new GLatLng(latitude, longitude));

GEvent.addListener(marker, 'click',
function() {

marker.openInfoWindowHtml(description);
}

);

map.addOverlay(marker);
}

CHAPTER 2� GETTING STARTED28

7079ch02.qxd 7/25/06 1:26 PM Page 28

function init() {
if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

for(id in markers) {
addMarker(markers[id].latitude, markers[id].longitude, markers[id].name);

}
}

}

window.onload = init;
window.onunload = GUnload;

Nothing here should be much of a surprise. You can see that the addMarker() function is
called for each of the markers, so you have three markers and three different info windows.

Summary
With this chapter complete, youÕve made an incredible amount of progress! YouÕve looked at
several good programming practices, seen how to plot multiple markers, and popped up the
info window. And all of this is in a tidy, reusable package.

So what will you do with it? Plot your favorite restaurants? Mark where you parked the
car? Show the locations of your business? Maybe mark your bandÕs upcoming gigs?

The possibilities are endless, but itÕs really just the beginning. In the next chapter, youÕll be
expanding on what you learned here by creating your map data dynamically and learning the
key to building a real community: accepting user-submitted information. After that, the weird
and wonderful science of geocodingÑturning street addresses into latitudes and longitudesÑ
will follow, along with a variety of tips and tricks you can use to add flavor to your web
applications.

CHAPTER 2� GETTING STARTED 29

7079ch02.qxd 7/25/06 1:26 PM Page 29

7079ch02.qxd 7/25/06 1:26 PM Page 30

Interacting with the User
and the Server

Now that youÕve created your first map (in Chapter 2) and had a chance to perform some ini-
tial experiments using the Google Maps API, itÕs time to make your map a little more useful
and dynamic. Most, if not all, of the best Google Maps mashups rely on interaction with the
user in order to customize the information displayed on the map. As youÕve already learned,
itÕs relatively easy to create a map and display a fixed set of points using static HTML and a bit
of JavaScript. Anyone with a few minutes of spare time and some programming knowledge
could create a simple map that would, for example, display the markers of all the places he
visited on his vacation last year. A static map such as this is nice to look at, but once youÕve
seen it, what would make you return to the page to look at it again? To keep people coming
back and to hold their attention for longer than a few seconds, you need a map with added
interactivity and a bit of flair.

You can add interactivity to your map mashups in a number of ways. For instance, you
might offer some additional detail for each marker using the info window bubbles introduced
in Chapter 2, or use something more elaborate such as filtering the markers based on search
criteria. Google Maps, GoogleÕs public mapping site (http://maps.google.com/) is a mashup of
business addresses and a map to visually display where the businesses are located. It provides
the required interactivity by allowing you to search for specific businesses, and listing other
relevant businesses nearby, but then goes even further to offer driving directions to the marked
locations. Allowing you to see the location of a business youÕre looking for is great, but telling
you how to get there in your car, now thatÕs interactivity! Without the directions, the map would
be an image with a bunch of pretty dots, and you would be left trying to figure out how to get
to each dot. Regardless of how itÕs done, the point is that interacting with the map is always
important, but donÕt go overboard and overwhelm your users with too many options.

In this chapter, weÕll explore a few examples of how to provide interactivity in your map using
the Google Maps API, and youÕll see how you can use the API to save and retrieve information
from your server. While building a small web application, youÕll learn how to do the following:

¥ Trigger events on your map and markers to add either new markers or info windows.

¥ Modify the content of info windows attached to a map or to individual markers.

¥ Use GoogleÕs GXmlHttpobject to communicate with your server.

¥ Improve your web application by changing the appearance of the markers.

31

C H A P T E R 3

� � �

7079ch03.qxd 7/26/06 4:56 PM Page 31

Going on a Treasure Hunt
To help you learn about some of the interactive features of the Google Maps API, youÕre going
to go on a treasure hunt and create a map of all the treasures you find. The treasures in this
case are geocaches, those little plastic boxes of goodies that are hidden all over the earth.

For those of you who are not familiar with geocaches(not to be confused with geocoding,
which we will discuss in the next chapter), or geocachingas the activity is commonly referred
to, it is a global Òhide-and-seekÓ game that can be played by anyone with a Global Positioning
System (GPS) device (Figure 3-1) and some treasure to hide and seek. People worldwide place
small caches of trinkets in plastic containers, and then distribute their GPS locations using the
Internet. Other people then follow the latitude and longitude coordinates and attempt to locate
the hidden treasures within the cache. Upon finding a cache, they exchange an item in the
cache for something of their own.

Figure 3-1.A common handheld GPS device used by geocachers to locate hidden geocaches

� NoteFor more information about geocaching, check out the official Geocaching website (http://www.
geocaching.com) or pick up Geocaching: Hike and Seek with Your GPS, by Erik Sherman (http://www.apress.
com/book/bookDisplay.html?bID=194).

As you create your interactive geocache treasure map, youÕll learn how to do the following:

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER32

7079ch03.qxd 7/26/06 4:56 PM Page 32

¥ Create a map and add a JavaScript event trigger using the GEvent.addListener()
method to react to clicks by the users, so that people who visit the map can mark their
finds on the map.

¥ Ask users for additional information about their finds using an info window and an
embedded HTML form.

¥ Save the latitude, longitude, and additional information in the form to your server
using the GXmlHttpAsynchronous JavaScript and XML (Ajax) object on the client side
and PHP on the server.

¥ Retrieve the existing markers and their additional information from the server using
Ajax and PHP.

¥ Re-create the map upon loading by inserting new markers from a server-side list, each
with an info window to display its information.

For this chapter, weÕre not going to discuss any CSS styling of the map and its contents;
weÕll leave all that up to you.

Creating the Map and Marking Points
YouÕll begin the map for this chapter from the same set of files introduced in Chapter 2, which
include the following:

¥ index.php to hold the XHTML of the page

¥ map_functions.js to hold the JavaScript functionality

¥ map_data.phpto create a JavaScript array and objects representing each location on the map

Additionally, youÕll create a file called storeMarker.php to save information back to the
server and another file called retrieveMarkers.php to retrieve XML using Ajax, but weÕll get to
those later.

Starting the Map
To start, copy the index.php file from Listing 2-2 and the map_functions.js file from Listing 2-3
into a new directory for this chapter. Also, create an empty map_data.phpfile and empty
store Marker.php and retrieveMarkers.php files.

While building the map for this chapter and other projects, youÕll be adding auxiliary
functions to the map_functions.js file. You may have noticed in Chapter 2 that you declared
the mapvariable outside the init() function in Listing 2-2. Declaring mapoutside the init()
function allows you to reference mapat any time and from any auxiliary functions you add to
the map_functions.js file. It will also ensure youÕre targeting the same mapobject. Also, you
may want to add some of the control objects introduced in Chapter 2, such as GMapTypeControl.
Listing 3-1 highlights the mapvariable and additional controls.

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER33

7079ch03.qxd 7/26/06 4:56 PM Page 33

Listing 3-1. Highlights for map_functions.js

var centerLatitude = 37.4419;
var centerLongitude = -122.1419;
var startZoom = 12;

var map;

function init() {
if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMap2TypeControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

}
}

window.onload = init;
window.onunload = GUnload;

Now you have a solid starting point for your web application. When viewed in your web
browser, the page will have a simple map with controls centered on Palo Alto, California
(Figure 3-2). For this example, the starting GLatLngis not important, so feel free to change it to
some other location if you wish.

Figure 3-2.Starting map with controls centered on Palo Alto, California

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER34

7079ch03.qxd 7/26/06 4:56 PM Page 34

Listening to User Events
The purpose of your map is to allow visitors to add markers wherever they click. To capture
the clicks on the map, youÕll need to trigger a JavaScript function to execute whenever the map
area is clicked. As you saw in Chapter 2, GoogleÕs API allows you to attach these triggers, called
event listeners, to your map objects through the use of the GEvent.addListener() method. You
can add event listeners for a variety of events, including moveand click , but in this case, you
are interested only in users clicking the map, not moving it or dragging it around.

� Tip If you refer to the Google Maps API documentation in Appendix B, youÕll notice a wide variety of events
for both the GMap2and the GMarkerobjects, as well as a few others. Each of these different events can be
used to add varying amounts of interactivity to your map. For example, you could use the moveendevent for
the GMap2to trigger an Ajax call and retrieve points for the new area of the map. For the geocaching map
example, you could also use the GMarkerÕs infowindowclose event to check to see if the information in
the form has been saved and if not, ask the user what to do. You can also attach events to Document
Object Model (DOM) elements using GEvent.addDomListener() and trigger an event using JavaScript
with the GEvent.trigger() method.

The GEvent.addListener() method handles all the necessary code required to watch for
and trigger each of the events. All you need to do is tell it which object to watch, which event
to listen for, and which function to execute when itÕs triggered.

GEvent.addListener(map, "click", function(overlay, latlng) {
//your code

});

Given the source mapand the event click , this example will trigger the function to run any
code you wish to implement.

Take a look at the modification to the init() function in Listing 3-2 to see how easy it is to
add this event listener to your existing code and use it to create markers the same way you did
in Chapter 2. The difference is that in Chapter 2, you used new GLatLng() to create the latitude
and longitude location for the markers, whereas here, instead of creating a new GLatLng, you can
use the latlng variable passed into the event listenerÕs handler function. The latlng variable is
a GLatLngrepresentation of the latitude and longitude where you clicked on the map. The overlay
variable is the overlay where the clicked location resides if you clicked on a marker or another
overlay object.

Listing 3-2. Using the addListener() Method to Create a Marker at the Click Location

function init() {
if (GBrowserIsCompatible()) {

map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMap2TypeControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER35

7079ch03.qxd 7/26/06 4:56 PM Page 35

//allow the user to click the map to create a marker
GEvent.addListener(map, "click", function(overlay, latlng) {

var marker = new GMarker(latlng)
map.addOverlay(marker);

});
}

}

Ta-da! Now, with a slight code addition and one simple click, anyone worldwide could
visit your map page and add as many markers as they want (Figure 3-3). However, all the
markers will disappear as soon as the user leaves the page, never to be seen again. To keep the
markers around, you need to collect some information and send it back to the server for stor-
age using the GXmlHttpobject or the GDownloadUrlobject, which weÕll discuss in the ÒUsing
GoogleÕs Ajax ObjectÓ section later in this chapter.

Figure 3-3.New markers created by clicking on the map

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER36

7079ch03.qxd 7/26/06 4:56 PM Page 36

RETRIEVING THE LATITUDE AND LONGITUDE FROM A MAP CLICK

When you click on a Google map, the latlng variable passed into the event listenerÕs handler function is
aGLatLngobject with lat() and lng() methods. Using the lat() and lng() methods makes it relatively
easy for you to retrieve the latitude and longitude of any point on earth simply by zooming in and clicking on
the map. This is particularly useful when you are trying to find the latitude and longitude of places that do not
have readily accessible latitude/longitude information for addresses.

In countries where there is excellent latitude and longitude information, such as the United States, Canada,
and more recently, France, Italy, Spain and Germany, you can often use an address lookup service to retrieve
the latitude and longitude of a street address. But in other locations, such as the United Kingdom, the data is
limited or inaccurate. In the case where data canÕt be readily retrieved by computer, manual human entry of
points may be required. For more information about geocoding and using addresses to find latitude and longi-
tude, see Chapter 4.

Additionally, If you want to retrieve the X and Y coordinates of a position on the map in pixels on the
screen, you can use the fromLatLngToDivPixel() method of the GMap2object. By passing in aGLatLng
object,GMap2.fromLatLngToDivPixel(latlng) will return aGPoint representation of the X and Y off-
set relative to the DOM element containing the map.

Asking for More Information with an Info Window
You could simply collect the latitude and longitude of each marker on your map, but just the
location of the markers would provide only limited information to the people browsing your
map. Remember interactivity is key, so you want to provide a little more than just a marker.
For the geocaching map, visitors really want to know what was found at each location. To pro-
vide this extra information, letÕs create a little HTML form. When asking for input of any type
in a web browser, you need to use HTML form elements. In this case, letÕs put the form in an
info window indicating where the visitor clicked.

As introduced in Chapter 2, the info window is the cartoon-like bubble that often appears
when you click map markers (Figure 3-4). It is used by Google Maps to allow you to enter the
To Here or From Here information for driving directions, or to show you a zoomed view of the
map at each point in the directions. Info windows do not need to be linked to markers on the
map. They can also be created on the map itself to indicate locations where no marker is present.

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER37

7079ch03.qxd 7/26/06 4:56 PM Page 37

Figure 3-4.An empty info window

YouÕre going to use the info window for two purposes:

¥ It will display the information about each existing marker when the marker is clicked.

¥ It will hold a little HTML form so that your geocachers can tell you what theyÕve found.

� NoteWhen we introduce the GXmlHttpobject in the ÒUsing GoogleÕs Ajax ObjectÓ section later in this
chapter, weÕll explain how to save the content of the info window to your server.

Creating an Info Window on the Map
In Listing 3-2, you used the event listener to create a marker on your map where it was clicked.
Rather than creating markers when you click the map, youÕll modify your existing code to create
an info window. To create an info window directly on the map object, call the openInfoWindow()
method of the map:

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER38

7079ch03.qxd 7/26/06 4:56 PM Page 38

GMap2.openInfoWindow(GLatLng, htmlDomElem, GInfoWindowOptions);

openInfoWindow() takes aGLatLngas the first parameter and an HTML DOM document
element as the second parameter. The last parameter, GInfoWindowOptions, is optional unless
you want to modify the default settings of the window.

For a quick demonstration, modify Listing 3-2 to use the following event listener, which
opens an info window when the map is clicked, rather than creating a new marker:

GEvent.addListener(map, "click", function(overlay, latlng) {
map.openInfoWindow (latlng,document.createTextNode("You clicked here!"));

});

Now when you click the map, youÕll see an info window pop up with its base pointing at
the position you just clicked with the content ÒYou clicked here!Ó (Figure 3-5).

Figure 3-5.An info window created when clicking the map

Embedding a Form into the Info Window
When geocachers want to create a new marker, youÕll first prompt them to enter some informa-
tion about their treasure. YouÕll want to know the geocacheÕs location (this will be determined
using the point where they clicked the map), what they found at the location, and what they
left behind. To accomplish this in your form, youÕll need the following:

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER39

7079ch03.qxd 7/26/06 4:56 PM Page 39

¥ A text field for entering information about what they found

¥ A text field for entering information about what they left behind

¥ A hidden field for the longitude

¥ A hidden field for the latitude

¥ A submit button

The HTML form used for the example is shown in Listing 3-3, but as you can see in Listing 3-4,
you are going to use the JavaScript Document Object Model (DOM) object and methods to create
the form element. You need to use DOM because the GMarker.openInfoWindow()method expects an
HTML DOM element as the second parameter, not simply a string of HTML.

� Tip If you want to make the form a little more presentable, you could easily add ids and/or classes to the
form elements and use CSS styles to format them accordingly.

Listing 3-3. HTML Version of the Form for the Info Window

<form action="" onsubmit="storeMarker(); return false;">
<fieldset style="width:150px;">

<legend>New Marker</legend>
<label for="found">Found</label>
<input type="text" id="found" style="width:100%;"/>
<label for="left">Left</label>
<input type="text" id="left" style="width:100%;"/>
<input type="submit" value="Save"/>
<input type="hidden" id="longitude"/>
<input type="hidden" id="latitude"/>

</fieldset>
</form>

� NoteYou may notice the form in Listing 3-3 has an onsubmit event attribute that calls astoreMarker()
JavaScript function. The storeMarker() function does not yet exist in your script, and if you try to click the
Savebutton, youÕll get a JavaScript error. Ignore this for now, as youÕll create the storeMarker() function
in the ÒSaving Data with GXmlHttpÓ section later in the chapter, when you save the form contents to the server.

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER40

7079ch03.qxd 7/26/06 4:56 PM Page 40

Listing 3-4. Adding the DOM HTML Form to the Info Window

GEvent.addListener(map, "click", function(overlay, latlng) {

//create an HTML DOM form element
var inputForm = document.createElement("form");
inputForm.setAttribute("action","");
inputForm.onsubmit = function() {storeMarker(); return false;};

//retrieve the longitude and lattitude of the click point
var lng = latlng.lng();
var lat = latlng.lat();

inputForm.innerHTML = '<fieldset style="width:150px;">'
+ '<legend>New Marker</legend>'
+ '<label for="found">Found</label>'
+ '<input type="text" id="found" style="width:100%;"/>'
+ '<label for="left">Left</label>'
+ '<input type="text" id="left" style="width:100%;"/>'
+ '<input type="submit" value="Save"/>'
+ '<input type="hidden" id="longitude" value="' + lng + '"/>'
+ '<input type="hidden" id="latitude" value="' + lat + '"/>'
+ '</fieldset>';

map.openInfoWindow (latlng,inputForm);
});

� CautionWhen creating the DOM form element, you need to use the setAttribute() method to define
things like name, action , target , and method, but once you venture beyond these basic four, you may begin
to notice inconsistencies. For example, using setAttribute() to define onsubmit works fine in Mozilla-based
browsers but not in Microsoft Internet Explorer browsers. For cross-browser compatibility, you need to define
onsubmit using a function, as you did in Listing 3-4. For more detailed information regarding DOM and how
to use it, check out the DOM section of the W3Schools website at http://www.w3schools.com/dom/ .

After youÕve changed the GEvent.addListener() call in Listing 3-2 to the one in Listing 3-4,
when you click your map, youÕll see an info window containing your form (Figure 3-6).

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER41

7079ch03.qxd 7/26/06 4:56 PM Page 41

Figure 3-6.The info window with an embedded form

In Listing 3-4, the latitude and longitude elements of the form have been pre-populated
with the latlng.lat() and latlng.lng() values from the GLatLngobject passed in to the event
listener. This allows you to later save the latitude and longitude coordinates and re-create the
marker in the exact position when you retrieve the data from the server. Also, once the informa-
tion has been saved for the new location, you can use this latitude and longitude to instantly
create a marker at the new location, bypassing the need to refresh the web browser to show
the newly saved point.

If you click again elsewhere on the map, youÕll also notice your info window disappears
and reappears at the location of the new click. As a restriction of the Google Maps API, you can
have only one instance of the info window open at any time. When you click elsewhere on the
map, the original info window is destroyed and a brand-new one is created. Be aware that it is
not simply moved from place to place.

You can demonstrate the destructive effect of creating a new info window yourself by fill-
ing in the form (Figure 3-7), and then clicking elsewhere on the map without clicking the Save
button. YouÕll notice that the information you entered in the form disappears (Figure 3-8)
because the original info window is destroyed and a new one is created.

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER42

7079ch03.qxd 7/26/06 4:56 PM Page 42

Figure 3-7.Info window with populated form information

Figure 3-8.New info window that has lost the previously supplied information

CHAPTER 3� INTERACTING WITH THE USER AND THE SERVER43

7079ch03.qxd 7/26/06 4:56 PM Page 43

To layer your data using the same tile structure as the Google Maps API, youÕll need to cre-
ate each of your tiles to match the existing Google tiles. Along with the sample code for the
book, weÕve included a PHP GoogleMapsUtility class in Listing 7-11, which has a variety of
useful methods to help you create your tiles. The tile script for the custom tile method (shown
later in Listing 7-13) uses the methods of the GoogleMapsUtility class to calculate the various
locations of each point on the tile. The calculations in the utility class are based on the
Mercator projection, which weÕll discuss further in Chapter 9, when we talk about types of
map projections.

Listing 7-11.The GoogleMapUtility Class Methods for Tile Construction

<?php

class GoogleMapUtility {
//The Google Maps all use tiles 256x256
const TILE_SIZE = 256;
/**
* Convert from a pixel location to a geographical location.
**/

public static function fromXYToLatLng($point,$zoom) {
$mapWidth = (1 << ($zoom)) * GoogleMapUtility::TILE_SIZE;

return new Point(
(int)($normalised->x * $mapWidth),
(int)($normalised->y * $mapWidth)

);
}

/**
* Calculate the pixel offset within a specific tile
* for the given latitude and longitude.
**/

public static function getPixelOffsetInTile($lat,$lng,$zoom) {
$pixelCoords = GoogleMapUtility::toZoomedPixelCoords(

$lat, $lng, $zoom
);
return new Point(

$pixelCoords->x % GoogleMapUtility::TILE_SIZE,
$pixelCoords->y % GoogleMapUtility::TILE_SIZE

);
}

/**
* Determine the geographical bounding box for the specified tile index
* and zoom level.
**/

public static function getTileRect($x,$y,$zoom) {
$tilesAtThisZoom = 1 << $zoom;

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS177

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 177

$lngWidth = 360.0 / $tilesAtThisZoom;
$lng = -180 + ($x * $lngWidth);

$latHeightMerc = 1.0 / $tilesAtThisZoom;
$topLatMerc = $y * $latHeightMerc;
$bottomLatMerc = $topLatMerc + $latHeightMerc;

$bottomLat = (180 / M_PI) * ((2 * atan(exp(M_PI *
(1 - (2 * $bottomLatMerc))))) - (M_PI / 2));

$topLat = (180 / M_PI) * ((2 * atan(exp(M_PI *
(1 - (2 * $topLatMerc))))) - (M_PI / 2));

$latHeight = $topLat - $bottomLat;

return new Boundary($lng, $bottomLat, $lngWidth, $latHeight);
}

/**
* Convert from latitude and longitude to Mercator coordinates.
**/

public static function toMercatorCoords($lat, $lng) {
if ($lng > 180) {

$lng -= 360;
}

$lng /= 360;
$lat = asinh(tan(deg2rad($lat)))/M_PI/2;
return new Point($lng, $lat);

}

/**
* Normalize the Mercator coordinates.
**/

public static function toNormalisedMercatorCoords($point) {
$point->x += 0.5;
$point->y = abs($point->y-0.5);
return $point;

}

/**
* Calculate the pixel location of a latitude and longitude point
* on the overall map at a specified zoom level.
**/

public static function toZoomedPixelCoords($lat, $lng, $zoom) {
$normalised = GoogleMapUtility::toNormalisedMercatorCoords(

GoogleMapUtility::toMercatorCoords($lat, $lng)
);

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS178

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 178

$scale = (1 << ($zoom)) * GoogleMapUtility::TILE_SIZE;
return new Point(

(int) ($normalised->x * $scale),
(int)($normalised->y * $scale)

);
}

}

/**
* Object to represent a coordinate point (x,y).
**/
class Point {

public $x,$y;
function __construct($x,$y) {

$this->x = $x;
$this->y = $y;

}

function __toString() {
return "({$this->x},{$this->y})";

}
}

/**
* Object to represent a boundary point (x,y) and (width,height)
**/
class Boundary {

public $x,$y,$width,$height;
function __construct($x,$y,$width,$height) {

$this->x = $x;
$this->y = $y;
$this->width = $width;
$this->height = $height;

}
function __toString() {

return "({$this->x},{$this->y},{$this->width},{$this->height})";
}

}

?>

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS179

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 179

Using the GoogleMapsUtility class, you can determine what information you need to
include in each tile. For example, in the client-side JavaScript for the custom tile method in
Listing 7-12 (which youÕll see soon), each tile request:

var tileURL = "server.php?x="+tile.x+"&y="+tile.y+"&zoom="+zoom;

contains three bits of information: an X position, a Y position, and the zoom level. These three
bits of information can be used to calculate the latitude and longitude boundary of a specific
Google tile using the GoogleMapsUtility::getTileRect method, as demonstrated in the
server-side PHP script for the custom tiles in Listing 7-13 (also coming up soon). The X and Y
positions represent the tile number of the map relative to the top-left corner, where positive X
and Y are east and south, respectively, starting at 1 and increasing as illustrated in Figure 7-8.
You can also see that the first column in Figure 7-8 contains tile (7,1) because the map has
wrapped beyond the meridian, so the first col umn is actually the rightmost edge of the map
and the second column is the leftmost edge.

Figure 7-8.Google tile numbering scheme

The zoom level is also required so that the calculations can determine the latitude
and longi tude resolution of the current map. For now, play with the example in Listings 7-12
and 7-13 (http://googlemapsbook.com/chapter7/ServerCustomTiles/). In Chapter 9, youÕll get
into the math required to calculate the proper position of latitude and longitude on the Mer-
cator projection, as well as a few other projections.

For the sample tiles, weÕve drawn a colored circle outlined in white with each color repre-
senting the height of the tower, as shown in Figure 7-9.

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS180

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 180

Figure 7-9.The finalized custom tile map in satellite mode

For testing purposes, each tile is also labeled with the date/time tile number and the
number of points in that tile. If you look at the online example, youÕll notice that the tiles ren-
der very quickly. Once drawn, the tiles are cached on the server side so when requested again, the
tiles are automatically served up by the server. Originally, when the tiles were created for zoom
level 1, some took up to 15 seconds to render, as there were almost 50,000 points per tiles in the
United States. If the data on your map is continually changing, you may want to consider
running a script to create all the tiles before publishing your map to the Web so your first
visitors donÕt experience a lag when the tiles are first created.

Listing 7-12.Client-Side JavaScript for the Custom Tile Method

var map;
var centerLatitude = 49.224773;
var centerLongitude = -122.991943;
var startZoom = 6;

//create the tile layer object
var detailLayer = new GTileLayer(new GCopyrightCollection(''));

//method to retrieve the URL of the tile
detailLayer.getTileUrl = function(tile, zoom){

//pass the x and y position as well as the zoom
var tileURL = "server.php?x="+tile.x+"&y="+tile.y+"&zoom="+zoom;
return tileURL;

};

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS181

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 181

detailLayer.isPng = function() {
//the example uses GIFs
return false;

}

//add your tiles to the normal map projection
detailMapLayers = G_NORMAL_MAP.getTileLayers();
detailMapLayers.push(detailLayer);

//add your tiles to the satellite map projection
detailMapLayers = G_SATELLITE_MAP.getTileLayers();
detailMapLayers.push(detailLayer);

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());

map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

}

window.onload = init;

Listing 7-13.Server-Side PHP for the Custom Tile Method

<?php

//include the helper calculations
require('GoogleMapUtility.php');

//this script may require additional memory and time
set_time_limit(0);
ini_set('memory_limit',8388608*10);

//create an array of the size for each marker at each zoom level
$markerSizes = array(1,1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12);

//get the lat/lng bounds of this tile from the utility function
//return a bounds object with width,height,x,y
$rect = GoogleMapUtility::getTileRect(

(int)$_GET['x'],
(int)$_GET['y'],
(int)$_GET['zoom']

);

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS182

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 182

//create a unique file name for this tile
$file = 'tiles/c'.md5(

serialize($markerSizes).
serialize($rect).'|'.
$_GET['x'].'|'.
$_GET['y'].'|'.
$_GET['zoom']).
'.gif';

//check if the file already exists
if(!file_exists($file)) {

//create a new image
$im = imagecreate(GoogleMapUtility::TILE_SIZE,GoogleMapUtility::TILE_SIZE);
$trans = imagecolorallocate($im,0,0,255);
imagefill($im,0,0,$trans);
imagecolortransparent($im, $trans);
$black = imagecolorallocate($im,0,0,0);
$white = imagecolorallocate($im,255,255,255);

//set up some colors for the markers.
//each marker will have a color based on the height of the tower
$darkRed = imagecolorallocate($im,150,0,0);
$red = imagecolorallocate($im,250,0,0);
$darkGreen = imagecolorallocate($im,0,150,0);
$green = imagecolorallocate($im,0,250,0);
$darkBlue = imagecolorallocate($im,0,0,150);
$blue = imagecolorallocate($im,0,0,250);
$orange = imagecolorallocate($im,250,150,0);

//init some vars
$extend = 0;
$z = (int)$_GET['zoom'];
$swlat=$rect->y + $extend;
$swlng=$rect->x+ $extend;
$nelat=$swlat+$rect->height + $extend;
$nelng=$swlng+$rect->width + $extend;

//connect to the database
require($_SERVER['DOCUMENT_ROOT'] . '/db_credentials.php');
$conn = mysql_connect("localhost", $db_name, $db_pass);
mysql_select_db("googlemapsbook", $conn);

/*
* Retrieve the points within the boundary of the map.
* For the FCC data, all the points are within the US so we
* don't need to worry about the meridian problem.
*/

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS183

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 183

$result = mysql_query(
"SELECT

longitude as lng,latitude as lat,struc_height,struc_elevation
FROM

fcc_towers
WHERE

(longitude > $swlng AND longitude < $nelng)
AND (latitude <= $nelat AND latitude >= $swlat)

ORDER BY
lat"

, $conn);

//get the number of points in this tile
$count = mysql_num_rows($result);

$filled=array();
$row = mysql_fetch_assoc($result);
while($row)
{

//get the x,y coordinate of the marker in the tile
$point = GoogleMapUtility::getPixelOffsetInTile($row['lat'],$row['lng'],$z);

//check if the marker was already drawn there
if($filled["{$point->x},{$point->y}"]<2) {

//pick a color based on the structure's height
if($row['struc_height']<=20) $c = $darkRed;
elseif($row['struc_height']<=40) $c = $red;
elseif($row['struc_height']<=80) $c = $darkGreen;
elseif($row['struc_height']<=120) $c = $green;
elseif($row['struc_height']<=200) $c = $darkBlue;
else $c = $blue;

//if there is aready a point there, make it orange
if($filled["{$point->x},{$point->y}"]==1) $c=$orange;

//get the size
$size = $markerSizes[$z];

//draw the marker
if($z<2) imagesetpixel($im, $point->x, $point->y, $c);
elseif($z<12) {

imagefilledellipse($im, $point->x, $point->y, $size, $size, $c);
imageellipse($im, $point->x, $point->y, $size, $size, $white);

} else {
imageellipse($im, $point->x, $point->y, $size-1, $size-1, $c);
imageellipse($im, $point->x, $point->y, $size-2, $size-2, $c);

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS184

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 184

imageellipse($im, $point->x, $point->y, $size+1, $size+1, $black);
imageellipse($im, $point->x, $point->y, $size, $size, $white);

}

//record that we drew the marker
$filled["{$point->x},{$point->y}"]++;

}

$row = mysql_fetch_assoc($result);
}

//write some info about the tile to the image for testing
imagestring($im,1,-1,0,

"$count points in tile ({$_GET['x']},{$_GET['y']}) @ zoom $z ",$white);
imagestring($im,1,0,1,

"$count points in tile ({$_GET['x']},{$_GET['y']}) @ zoom $z ",$white);
imagestring($im,1,0,-1,

"$count points in tile ({$_GET['x']},{$_GET['y']}) @ zoom $z ",$white);
imagestring($im,1,1,0,

"$count points in tile ({$_GET['x']},{$_GET['y']}) @ zoom $z ",$white);
imagestring($im,1,0,0,

"$count points in tile ({$_GET['x']},{$_GET['y']}) @ zoom $z ",$black);
imagestring($im,1,0,9,date('r'),$black);

//output the new image to the file system and then send it to the browser
header('content-type:image/gif;');
imagegif($im,$file);
echo file_get_contents($file);

} else {

//output the existing image to the browser
header('content-type:image/gif;');
echo file_get_contents($file);

}

?>

� Tip Another benefit of using the tile layer is that it bypasses the cross-domain scripting restrictions on the
browser. Each tile is actually an image and nothing more. The GETparameters specify which tile the browser
is requesting, and the browser can load any image from any site, as it is not considered maliciousÑitÕs just
an image.

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS185

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 185

BUT WHAT ABOUT INFO WINDOWS?

Using tiles to display your ÒmarkersÓ is relatively easy, and you can simulate most of the features of the GMarker
object,with the exception of info windows. You canÕt attach an info window to the pretend markers in your tile,
but you can fake it.

Back in Chapter 3, you created an info window when you clicked on the map by using
GMap2.openInfoWindow. You could do the same here, and then use an Ajax request to ask for the content of
the info window using something like this:

GEvent.addListener(map, "click", function(marker, point) {
GDownloadUrl(

"your_server_side_script.php?"
+ "lat=" + point.lat()
+ "&lng=" + point.lng()
+ "&z=" + map.getZoom(),
function(data, responseCode) {

map.openInfoWindow(point,document.createTextNode(data));
});

});

The trick is figuring out what was actually clicked. When your users click your map, youÕll need to send
the locationÕs latitude and longitude back to the server and have it determine what information is relative to that
point. If something was clicked, you can then send the appropriate information back across the Ajax request and
create an info window directly on the map. From the clientÕs point of view, it will look identical to an info window
attached to a marker, except that it will be slightly slower to appear, as your server needs to process the
request to see what was clicked.

Optimizing the Client-Side User Experience
If your data set is just a little too big for the mapÑsomewhere between 100 to 300 pointsÑ
you donÕt necessarily need to make new requests to retrieve your information. You can achieve
good results using solutions similar to those weÕve outlined for the server side, but store the
data set in the browserÕs memory using a JavaScript object. This way, you can achieve the same
effect but not require an excessive number of requests to the server.

The three methods weÕll discuss are pretty much the same as the corresponding server-side
methods, except that the processing is all done on the client side using the methods of the API
rather than calculating everything on the server side:

¥ Client-side boundary method

¥ Client-side closest to a common point method

¥ Client-side clustering

After we look at these solutions using client-side JavaScript and data objects, weÕll recom-
mend a couple other optimizations to improve your usersÕ experience.

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS186

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 186

Client-Side Boundary Method
With the server-side boundary method, you used the server to check if a point was inside the
boundary of the map. Doing so on the server side required that you write the calculation man-
ually into your script. Using the Google Maps API provides a much simpler solution, as you
can use the contains() method of the GLatLngBoundsobject to ask the API if your GLatLngpoint
is within the specified boundary. The contains() methods returns true if the supplied point is
within the geographical coordinates defined by the rectangular boundary.

Listing 7-14 (http://googlemapsbook.com/chapter7/ClientBounds/) shows the working
example of the boundary method implemented in JavaScript.

Listing 7-14.JavaScript for the Client-Side Boundary Method

var map;
var centerLatitude = 49.224773;
var centerLongitude = -122.991943;
var startZoom = 4;

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {
updateMarkers();

});
GEvent.addListener(map,'moveend',function() {

updateMarkers();
});

}

function updateMarkers() {
map.clearOverlays();
var mapBounds = map.getBounds();

//loop through each of the points from the global points object
for (k in points) {

var latlng = new GLatLng(points[k].lat,points[k].lng);
if(!mapBounds.contains(latlng)) continue;
var marker = createMarker(latlng);
map.addOverlay(marker);

}
}

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS187

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 187

function createMarker(point) {
var marker = new GMarker(point);
return marker;

}

window.onload = init;

When you move or zoom the map, the updateMarkers() function loops through
a points object to create the necessary markers for the boundary of the viewable area. The
points JSON object resembles the object discussed earlier in the chapter:

var points = {
p1:{lat:-53,lng:-74},
p2:{lat:-51.4,lng:59.51},
p3:{lat:-45.2,lng:-168.43},
p4:{lat:-41.19,lng:-174.46},
p5:{lat:-36.3,lng:60},
p6:{lat:-35.15,lng:-149.08},
p7:{lat:-34.5,lng:56.11},

... etc ...

p300:{lat:-33.24,lng:70.4},
}

This object was loaded into the browser using another script tag, in the same way you
loaded the data into the map in Chapter 2. Now, rather than creating a new request to the
server, the points object contains all the points, so you only need to loop through points
and determine if the current point is within the current boundary. Listing 7-14 uses the cur-
rent boundary of the map from map.getBounds().

Client-Side Closest to a Common Point Method
As with the boundary method, the client-side closest to a common point method is similar
to the server-side closest to common point method, but you can use the Google Maps API to
accomplish the same goal on the client side if you donÕt have too many points. With a known
latitude and longitude point, you can calculate the distance from the known point to any other
point using the distanceFrom() method of the GLatLngclass as follows:

var here = new GLatLng(lat,lng);
var distanceFromThereToHere = here.distanceFrom(there);

The distanceFrom() method returns the distance between the two points in meters, but
remember that the Google Maps API assumes the earth is a sphere, even though the earth is
slightly elliptical, so the accuracy of the distance may be off by as much as 0.3%, depending
where the two points are on the globe.

In Listing 7-15 (http://googlemapsbook.com/chapter7/ClientClosest/), you can see the
client-side JavaScript is very similar to the server-side PHP in Listing 7-5. The main difference
(besides not sending a request to the server) is the use of point.distanceFrom() rather than

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS188

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 188

the surfaceDistance() PHP function. Also for the example, the boundary of the data is out-
lined using the Rectangle object, similar to the one discussed earlier.

Listing 7-15.JavaScript for the Client-Side Closest to Common Point Method

var map;
var centerLatitude = 41.8;
var centerLongitude = -72.3;
var startZoom = 8;

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

//pass in an initial point for the center
updateMarkers(new GLatLng(centerLatitude, centerLongitude));

GEvent.addListener(map,'click',function(overlay,point) {
//pass in the point for the center
updateMarkers(point);

});

}

function updateMarkers(relativeTo) {

//remove the existing points
map.clearOverlays();

//mark the outer boundary of the data from the points object
var allsw = new GLatLng(41.57025176609894, -73.39965820312499);
var allne = new GLatLng(42.589488572714245, -71.751708984375);
var allmapBounds = new GLatLngBounds(allsw,allne);
map.addOverlay(new Rectangle(allmapBounds,4,"#F00"));

var distanceList = [];
var p = 0;
//loop through points and get the distance to each point
for (k in points) {

distanceList[p] = {};
distanceList[p].glatlng = new GLatLng(points[k].lat,points[k].lng);
distanceList[p].distance = distanceList[p].glatlng.distanceFrom(relativeTo);
p++;

}

//sort based on the distance
distanceList.sort(function (a,b) {

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS189

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 189

if(a.distance > b.distance) return 1
if(a.distance < b.distance) return -1
return 0

});

//create the first 50 markers
for (i=0 ; i<50 ; i++) {

var marker = createMarker(distanceList[i].glatlng);
map.addOverlay(marker);
if(++i > 50) break;

}
}

function createMarker(point) {
var marker = new GMarker(point);
return marker;

}

window.onload = init;

/*
* Rectangle overlay for testing to mark boundaries
*/
function Rectangle(bounds, opt_weight, opt_color) {

this.bounds_ = bounds; this.weight_ = opt_weight || 1;
this.color_ = opt_color || "#888888";

}
Rectangle.prototype = new GOverlay();

Rectangle.prototype.initialize = function(map) {
var div = document.createElement("div");
div.innerHTML = 'Click inside area';
div.style.border = this.weight_ + "px solid " + this.color_;
div.style.position = "absolute";
map.getPane(G_MAP_MAP_PANE).appendChild(div);
this.map_ = map;
this.div_ = div;

}
Rectangle.prototype.remove = function() {

this.div_.parentNode.removeChild(this.div_);
}
Rectangle.prototype.copy = function() {

return new Rectangle(
this.bounds_,
this.weight_,
this.color_,
this.backgroundColor_,

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS190

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 190

this.opacity_
);

}
Rectangle.prototype.redraw = function(force) {

if (!force) return;
var c1 = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());
var c2 = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());
this.div_.style.width = Math.abs(c2.x - c1.x) + "px";
this.div_.style.height = Math.abs(c2.y - c1.y) + "px";
this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight_) + "px";
this.div_.style.top = (Math.min(c2.y, c1.y) - this.weight_) + "px";

}

Client-Side Clustering
If your data is dense, you may still want to cluster points when there are overlapping points in
proximity. As with the server-side clustering method, there are a variety of ways you can calcu late
which points to group. In Listing 7-16 (http://googlemapsbook.com/chapter7/ClientClus ter/), we
use a grid method similar to the one we used with the server-side clustering example. The bi ggest dif-
ference here is your grid cells will be larger and not as fine-grained, so you donÕt slow down the
JavaScript on slower computers. If you modify the grid cells over several loops, the browser
may assume that the script is taking too long and display a warning, as shown in Figure 7-10.

Figure 7-10.A JavaScript warning in Firefox indicating the script is taking too long to execute

Listing 7-16.JavaScript for Client-Side Clustering

var map;
var centerLatitude = 42;
var centerLongitude = -72;
var startZoom = 8;

//create an icon for the clusters
var iconCluster = new GIcon();
iconCluster.image = "http://googlemapsbook.com/chapter7/icons/cluster.png";
iconCluster.shadow = "http://googlemapsbook.com/chapter7/icons/cluster_shadow.png";
iconCluster.iconSize = new GSize(26, 25);
iconCluster.shadowSize = new GSize(22, 20);
iconCluster.iconAnchor = new GPoint(13, 25);
iconCluster.infoWindowAnchor = new GPoint(13, 1);
iconCluster.infoShadowAnchor = new GPoint(26, 13);

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS191

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 191

//create an icon for the pins
var iconSingle = new GIcon();
iconSingle.image = "http://googlemapsbook.com/chapter7/icons/single.png";
iconSingle.shadow = "http://googlemapsbook.com/chapter7/icons/single_shadow.png";
iconSingle.iconSize = new GSize(12, 20);
iconSingle.shadowSize = new GSize(22, 20);
iconSingle.iconAnchor = new GPoint(6, 20);
iconSingle.infoWindowAnchor = new GPoint(6, 1);
iconSingle.infoShadowAnchor = new GPoint(13, 13);

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {
updateMarkers();

});

GEvent.addListener(map,'moveend',function() {
updateMarkers();

});

}

function updateMarkers() {

//remove the existing points
map.clearOverlays();

//mark the boundary of the data
var allsw = new GLatLng(41.57025176609894, -73.39965820312499);
var allne = new GLatLng(42.589488572714245, -71.751708984375);
var allmapBounds = new GLatLngBounds(allsw,allne);
map.addOverlay(

new Rectangle(
allmapBounds,
4,
'#F00',
'Data Bounds, Zoom in for detail.'

)
);

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 192

//get the bounds of the viewable area
var mapBounds = map.getBounds();
var sw = mapBounds.getSouthWest();
var ne = mapBounds.getNorthEast();
var size = mapBounds.toSpan(); //returns GLatLng

//make a grid that's 10x10 in the viewable area
var gridSize = 10;
var gridCellSizeLat = size.lat()/gridSize;
var gridCellSizeLng = size.lng()/gridSize;
var gridCells = [];

//loop through the points and assign each one to a grid cell
for (k in points) {

var latlng = new GLatLng(points[k].lat,points[k].lng);

//check if it is in the viewable area,
//it may not be when zoomed in close
if(!mapBounds.contains(latlng)) continue;

//find grid cell it is in:
var testBounds = new GLatLngBounds(sw,latlng);
var testSize = testBounds.toSpan();
var i = Math.ceil(testSize.lat()/gridCellSizeLat);
var j = Math.ceil(testSize.lng()/gridCellSizeLng);
var cell = i+j;

if(typeof gridCells[cell] == 'undefined') {
//add it to the grid cell array
var cellSW = new GLatLng(

sw.lat()+((i-1)*gridCellSizeLat),
sw.lng()+((j-1)*gridCellSizeLng)

);
var cellNE = new GLatLng(

cellSW.lat()+gridCellSizeLat,
cellSW.lng()+gridCellSizeLng

);
gridCells[cell] = {

GLatLngBounds : new GLatLngBounds(cellSW,cellNE),
cluster : false,
markers:[],
length:0

};

//mark cell for testing

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS193

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 193

map.addOverlay(
new Rectangle(

gridCells[cell].GLatLngBounds,
1,
'#00F',
'Grid Cell'

)
);

}

gridCells[cell].length++;

//already in cluster mode
if(gridCells[cell].cluster) continue;

//only cluster if it has more than 2 points
if(gridCells[cell].markers.length==3) {

gridCells[cell].markers=null;
gridCells[cell].cluster=true;

} else {
gridCells[cell].markers.push(latlng);

}

}

for (k in gridCells) {
if(gridCells[k].cluster == true) {

//create a cluster marker in the center of the grid cell
var span = gridCells[k].GLatLngBounds.toSpan();
var sw = gridCells[k].GLatLngBounds.getSouthWest();
var marker = createMarker(

new GLatLng(sw.lat()+(span.lat()/2),
sw.lng()+(span.lng()/2))
,'c'

);
map.addOverlay(marker);

} else {
//create the single markers
for(i in gridCells[k].markers) {

var marker = createMarker(gridCells[k].markers[i],'p');
map.addOverlay(marker);

}
}

}
}

function createMarker(point, type) {

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS194

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 194

//create the marker with the appropriate icon
if(type=='c') {

var marker = new GMarker(point,iconCluster,true);
} else {

var marker = new GMarker(point,iconSingle,true);
}

return marker;
}

window.onload = init;

/*
* Rectangle overlay for development only to mark boundaries for testing...
*/
function Rectangle(bounds, opt_weight, opt_color, opt_html) {

this.bounds_ = bounds; this.weight_ = opt_weight || 1;
this.html_ = opt_html || ""; this.color_ = opt_color || "#888888";

}
Rectangle.prototype = new GOverlay();

Rectangle.prototype.initialize = function(map) {
var div = document.createElement("div");
div.innerHTML = this.html_;
div.style.border = this.weight_ + "px solid " + this.color_;
div.style.position = "absolute";
map.getPane(G_MAP_MAP_PANE).appendChild(div);
this.map_ = map;
this.div_ = div;

}
Rectangle.prototype.remove = function() {

this.div_.parentNode.removeChild(this.div_);
}
Rectangle.prototype.copy = function() {

return new Rectangle(
this.bounds_,
this.weight_,
this.color_,
this.backgroundColor_,
this.opacity_

);
}
Rectangle.prototype.redraw = function(force) {

if (!force) return;
var c1 = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());
var c2 = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());
this.div_.style.width = Math.abs(c2.x - c1.x) + "px";
this.div_.style.height = Math.abs(c2.y - c1.y) + "px";

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS195

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 195

this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight_) + "px";
this.div_.style.top = (Math.min(c2.y, c1.y) - this.weight_) + "px";

}

Further Optimizations
Once you have your server and JavaScript optimized for your data set, you may also want to
consider some additional niceties.

Removing Load Flashing

With the examples weÕve presented so far, you may have noticed that your maps ÒflashÓ
between redraws and requests. This occurs because the JavaScript removes all the points and
then draws them all again. If you donÕt move the map a considerable distance, some points
that are removed are then immediately replaced again. To avoid this, you can create a second-
ary JavaScript object to ÒrememberÓ which points are currently on the map and remove only
those that arenÕt in the new list. Using the same object, you can also add only those that arenÕt
in the old list. Listing 7-17 (http://googlemapsbook.com/chapter7/TrackingPoints/) shows
the client-side boundary method from Listing 7-14 modified to keep track of points to remove
the flashing between redraws.

Listing 7-17.Modified Client-Side Boundary JavaScript That Remembers Which Markers Are on
the Map

var map;
var centerLatitude = 49.224773;
var centerLongitude = -122.991943;
var startZoom = 4;

var existingMarkers = {};

function init() {
map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

updateMarkers();

GEvent.addListener(map,'zoomend',function() {
updateMarkers();

});
GEvent.addListener(map,'moveend',function() {

updateMarkers();
});

}

function updateMarkers() {
//don't remove all the overlays!

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS196

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 196

//map.clearOverlays();
var mapBounds = map.getBounds();

//loop through each of the points in memory and remove those that
//aren't going to be shown
for(k in existingMarkers) {

if(!mapBounds.contains(existingMarkers[k].getPoint())) {
map.removeOverlay(existingMarkers[k]);
delete existingMarkers[k];

}
}

//loop through each of the points from the global points object
//and create markers that don't exist
for (k in points) {

var latlng = new GLatLng(points[k].lat,points[k].lng);

//skip it if the marker already exists
//or is not in the viewable area
if(!existingMarkers[k] && mapBounds.contains(latlng)) {

existingMarkers[k] = createMarker(latlng);
map.addOverlay(existingMarkers[k]);

}
}

}

function createMarker(point) {
var marker = new GMarker(point);
return marker;

}

window.onload = init;

You can apply the same fix for both server-side and client-side optimizations where the
JavaScript is responsible for creating the markers.

Planning for the Next Move

If you want to be really nice and provide the ultimate user experience, you can put a little
intelligence into your map and have it anticipate what the users are going to do next. From
watching map users in test groups, itÕs our experience that most users ÒdragÓ the map in very
small increments as they move around. The dragging movement of the map generally reveals
only another 25% to 50% of that map in the direction opposite the drag.

Though you may assume your users will grab the map and drag around in large sweeping
motions (which they still could), smaller motions offer you an advantage. You can keep track of
each movement and anticipate that the next movement will take the map in generally the same
direction. If you know where the users are going to go, you can request the new points for that
direction and have them alr eady waiting before they get there.

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS197

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 197

Additionally, you could also extend the requested bounds beyond the edge of the viewport to
include whatÕs just outside the edge. By extending the boundary a bit outside the viewport, your
users would think the map is loading faster, as markers are appearing quickly around the edge.

Summary
In this chapter, weÕve presented a few optimization methods, for both your server and the
browser, that allow your web application to run smoothly. By combining methods such as
clustering and closest to point searches, you can further improve and create new optimization
methods that will present your data in easy-to-understand and creative ways.

While working on your projects, be sure to choose the best method for the task at hand
and donÕt base your decision on coolnessalone. Creating your own tiles, as in the custom tile
method described in this chapter, is pretty neat, but doesnÕt serve well for data that is gener-
ated from filtered searches, since each tile will always be different. Also, when using a feature
like clustering, make sure that your icons and user interface indicate this to the user.

Once you have your web application working, be sure to go over it again and look for places
that could benefit from further optimization. Check again for areas where you could reduce
the amount of data transferred between the client and the server, or check places where youÕre
looping through large amounts of data and see if you can reduce it further. Just because your web
application works doesnÕt mean itÕs working as well as it could. The better optimized your map,
the happier your users will be and the better experience theyÕll have.

At the same time youÕre improving your web application and optimizing it to the best of
your ability, Google will continue to develop its Maps API, adding improvements and new
features. In the next chapter, youÕll see some of the possible things Google may add, but no
guarantees!

CHAPTER 7� OPTIMIZING AND SCALING FOR LARGE DATA SETS198

7079ch07FINAL.qxd 7/25/06 1:45 PM Page 198

WhatÕs Next for the Google
Maps API?

As this book goes to press, the Google Maps API is still very much in development; its feature
set continues to change and improve. As the API increases in popularity and new methods are
added, itÕs often necessary to alter the way things work to enable new capabilities or provide
more consistency throughout the API as a whole. Version 2, for example, split the GPoint class
into separate GPoint and GLatLngclasses, each with enhanced capabilities corresponding to
their respective roles in handling pixel coordinates and geographical locations. In reversing
the zoom levels, which may have been an annoyance to developers, Google allowed the maps
to support as many detail levels as the satellite photography (or your custom overlay) warrants.

So far, weÕve shown you a lot of really neat techniques and tricks for getting data into your
application and onto a map. In the following chapters, weÕll expand on that and show you
some powerful tools for making complex projects. But before we dive deeper into the API,
we want to mention a few things you may want to keep a lookout for as the API continues to
mature. None of these things are guarantees, but theyÕre likely possibilities, given the demand
and interest in them. As developers like yourself push the API further, the demand for new
capabilitiesÑsuch as the free geocoderÑbecomes louder, and when Google consents, we get
more toys and more fun.

Driving Directions
If you follow the Google Maps discussion group at http://groups.google.com/group/
Google-Maps-API, which we highly recommend you do, youÕll notice a growing interest in the
routing system built into http://maps.google.com , as shown in Figure 8-1.

199

C H A P T E R 8

� � �

7079ch08a.qxd 7/25/06 4:40 PM Page 199

Figure 8-1.Google Maps with a route from Toronto to New York

Similar to the recently released geocoding service, Google could add an additional class
that would allow you to retrieve the route information between arbitrary points on your map.
This seems even more likely now that Google is also offering an Enterprise edition of the Maps
API (http://www.google.com/enterprise/maps/) for use in closed, corporate environments.
Franchises and large chains of stores or restaurants could benefit from the inclusion of routing
features to service their customers and delivery personnel.

Routing is an interesting can of worms, since it begins to expose more of GoogleÕs internal
road database. But road information is not a secret, of course; if you want it, you can get it
from freely available sources such as the US Census BureauÕs TIGER/Line files, as you will see
in Chapter 11. The concern would be more with the immense computational power necessary
to serve up complicated road queries in high volume, particularly to amateur API developers,
who may not understand throttling or caching.

Integrated Google Services
As youÕve seen in Chapter 4, searching manually for data to plot and geocoding all the infor-
mation yourself can be time-consuming and costly. However, vast stores of information are
already available, hidden away in GoogleÕs search and service databases.

CHAPTER 8� WHATÕS NEXT FOR THE GOOGLE MAPS API?200

7079ch08a.qxd 7/25/06 4:40 PM Page 200

Google already offers its own business listing map web application at http://maps.
google.com, where you can search for businesses based on their geographical location, as
shown in Figure 8-2.

Figure 8-2.Google Maps search for ÒNew York Book StoresÓ

If Google chose to integrate its search database into the Google Maps API, GoogleÕs
servers could provide you with ready-to-use mapping information based on search terms.
This would relieve you of some parsing and geocoding tasks, and eliminate the burden of col-
lecting the information for your web application.

Imagine creating a map of bookstores in New York by asking the API for Òbookstores in
New York.Ó The possibility of supplementing your mapÕs proprietary data with GoogleÕs public
data is certainly an intriguing one. As the owner of a chain of bookstores, you could not only
help your customers locate your stores, but you could also offer added value by throwing up
the results of a ÒCoffee shops within one mile of StoreLatLngÓ query.

� Tip Though not built into the Google Maps API, using GoogleÕs search database is actually possible now
by combining some additional Google APIs such as the Google AJAX Search API and maps. For an example,
check out the My Favorite Places page at http://www.google.com/uds/samples/places.html , where
you can type in a request such as ÒNew York BookstoresÓ and get mapping information.

CHAPTER 8� WHATÕS NEXT FOR THE GOOGLE MAPS API?201

7079ch08a.qxd 7/25/06 4:40 PM Page 201

KML Data
As you saw in Chapter 1, the http://maps.google.com site lets you plot any arbitrary KML data
directly on your map. In that chapter, we showed you a quick sample file that marked three
popular destinations in downtown Toronto. Figure 8-3 shows a similar file, which drops an
arbitrary point onto southeastern Ontario.

Figure 8-3.Sample KML file in a map

At the moment, using KML data is possible only with Google Maps itself, not directly from
the API. But it certainly appears that Google has reason to expand interest in the KML data
format. We expect future versions of the API to provide shortcut functions for loading and
parsing this kind of information. You can do it yourself, of course, but to automate it would
help bridge the gap between users of Google Maps and users of the Maps API.

More Data Layers
The satellite imagery included in the API has opened the whole world to people who may
never even travel out of their hometown. With a simple click and drag of the mouse, sites such
as http://googlesightseeing.com (Figure 8-4) can take you anywhere on the planet, and in
many cases, give you a close enough look to make out cars and people.

CHAPTER 8� WHATÕS NEXT FOR THE GOOGLE MAPS API?202

7079ch08a.qxd 7/25/06 4:40 PM Page 202

Figure 8-4.The Google Sightseeing home page

So if Google can offer two layers of data (satellite and map), then why shouldnÕt we expect
that it will begin to offer other complementary layers? The data for things like elevation,
weather trends, and population density are all available, and would make excellent layers in
the system. While this may tread on some of the maps we are building, it could also open up
new opportunities, just as the satellite imagery did for sightseeing.

Also, Google Earth, GoogleÕs desktop mapping software, already allows you to incorporate
Google SketchUp objects, so why not make these objects available to the Google Maps API, too?

CHAPTER 8� WHATÕS NEXT FOR THE GOOGLE MAPS API?203

7079ch08a.qxd 7/25/06 4:40 PM Page 203

Beyond the Enterprise
In building new relationships with enterprise providers, Google is edging into the corporate
mapping space previously dominated by desktop products such as Microsoft MapPoint. When
enterprise clients begin to require even greater performance and feature diversity, Google may
provide a Google Maps Mini appliance similar to the Google Mini search appliance offered
today (http://www.google.com/enterprise/mini/). A Mini appliance would provide the corpo-
rate world with a Òmap-in-a-boxÓ solution that could be highly customized and branded to
offer features that support the needs of specific companies and markets.

Those of us using the free mapping API may also one day see integrated advertisements
in our maps. The terms of service have always provided for the eventuality of Google adding
things to make money from your map. Paying enterprise customers would certainly be exempt
from any integrated advertising, which would offer the rest of us a compelling reason to upgrade
to the enterprise subscription.

� NoteThe API key signup page explicitly states that Google will give developers 90 days notice via the
official Google Maps API blog (http://googlemapsapi.blogspot.com) before introducing advertising into
third-party sites such as those youÕre building. If the prospect of advertising bothers you, we suggest that
you follow this blog closely.

Interface Improvements
The current Google Maps interface is built entirely using XHTML, CSS, and JavaScript. It works
extremely well, but is limited by the browserÕs ability to quickly scale images or move around
large numbers of on-screen objects. Other mapping tools such as the Yahoo Mapping API
offer alternative Flash clients that can benefit from the performance optimizations of that sys-
tem. Though Google doesnÕt offer a Flash-based API, others have attempted to incorporate the
Google Maps API with Flash and created unique, highly interactive, and rich web applications.
Figure 8-5 shows one example: the X-Men map at http://xplanet.net .

CHAPTER 8� WHATÕS NEXT FOR THE GOOGLE MAPS API?204

7079ch08a.qxd 7/25/06 4:40 PM Page 204

Figure 8-5.The X-Men Flash-based Google map1

With the growing competition from Yahoo! Maps and Windows Live Local, Google may
come to offer additional options such as a Flash API, or even a next-generation one based on
Scalable Vector Graphics (SVG) or some other technology that can bring the browser experi-
ence closer to that of Google Earth.

Summary
In this chapter, we speculated about what might be coming up in the Google API. Along with
the new services, we can expect better tools. As with any web application, Google will be con-
tinually improving on the existing components of the Maps API. Tools like the newly released
geocoder will eventually expand to cover more countries and improve accuracy as more
detailed information becomes available. Satellite imagery will increase in detail and will be
updated continually with more and more recent images.

Now we are ready to move on to some more advancing mapping techniques. In the next
part of the book, weÕll cover a wide variety of complementary concepts for your mapping proj-
ects. Chapter 9 demonstrates how to make your own info windows and tool tips, as well as
other overlay-related tricks. In Chapter 10, weÕll cover some mathematics you may need in
a professional map. Finally, in Chapter 11, weÕll show you how to build your own geocoder
from scratch, using a raw data set.

CHAPTER 8� WHATÕS NEXT FOR THE GOOGLE MAPS API?205

1. X-Men and XPlanet.net copyright Marvel, Fox and their related entities.

7079ch08a.qxd 7/25/06 4:40 PM Page 205

7079ch08a.qxd 7/25/06 4:40 PM Page 206

Advanced Map Features
and Methods

P A R T 3

� � �

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 207

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 208

Advanced Tips and Tricks

Beyond what youÕve seen so far, the Google Maps API has a number of features that are often
overlooked. Here, youÕll go through a variety of examples to learn how to use some of the more
advanced features of the API, such as the ability to change map tiles and the possibility of cre ating
your own overlay objects.

In this chapter, the examples demonstrate how to do the following:

¥ Create an overlay for markers that acts as a tool tip.

¥ Promote yourself with a custom icon control.

¥ Add tabs to info windows.

¥ Construct your own info window.

¥ Create your own map tiles using the NASA Blue Marble images.

Debugging Maps
Before diving into the examples, letÕs take a quick look at debugging within the Google Maps API.
With the Google Maps API version 1, the debuggerÕs best friend was alert() . But as they say, ÒOnly
a Lert uses alert to debug,Ó and if youÕve ever accidentally ÒalertedÓ something in a loop, you know
what they mean! With Google Maps API version 2, you now have access to the wonderfully simple,
yet wonderfully useful, GLogclass. Now GLog.write() is the ÒnewÓ alert() , but it creates a floating
log window, as shown in Figure 9-1, to hold all your debugging messages.

Figure 9-1.Empty GLog window

209

C H A P T E R 9

� � �

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 209

For example, if youÕre curious about what methods and properties a JavaScript object has,
such as the GMap2object, try this:

var map = new GMap2(document.getElementById("map"));
for(i in map) { GLog.write(i); }

Voilˆ! The GLogwindow in Figure 9-2 now contains a scrolling list of all the methods and
properties belonging to your GMap2object, and you didnÕt need to click OK in dozens of alert
windows to get to it.

Figure 9-2.GLog window listing methods and properties of the GMap2 object

The GLog.write() method escapes any HTML and logs it to the window as source code. If
you want to output formatted HTML, you can use the GLog.writeHtml() method. Similarly, to out-
put a clickable link, just pass a URL into the GLog.writeUrl() method. The writeUrl() method
is especially useful when creating your own map tiles, as youÕll see in the ÒImplementing Your
Own Map Type, Tiles, and ProjectionÓ section later in the chapter, where you can simply log the
URL and click the link to go directly to an image for testing.

� Tip GLogisnÕt bound to just map objects; it can be used throughout your web application to debug any
JavaScript code you want. As long as the Google Maps API is included in your page, you can use GLogto help
debug anything from Ajax requests to mouse events.

Interacting with the Map from the API
When building your web applications using Google Maps, youÕll probably have more in your
application than just the map. WhatÕs outside the map will vary depending on the purpose of
your project and could include anything from graphical eye candy to interactive form ele ments.
When these external elements interact with the map, especially when using the mouse, you may
often find yourself struggling to locate the pixel position of the various map objects on your scr een.
You may also run into situations where you need to trigger events, even mouse-related events,
without the cursor ever touching the element. In these situations, a few classes and methods
may come in handy.

CHAPTER 9� ADVANCED TIPS AND TRICKS210

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 210

Helping You Find Your Place
More and more, your web applications will be interacting with users in detailed and intricate ways.
Gone are the days of simple requests and responses, where the cursor was merely used to navigate
from box to box on a single form. Today, your web application may rely on drag-and-drop, sliders,
and other mouse movements to create a more desktop-like environment. To help you keep track
of the position of objects on the map and on the screen, Google has provided coordinate
transformation methods that allow you to convert a longitude and latitude into X and Y screen
coordinates and vice versa.

To find the pixel coordinates of a location on the map relative to the mapÕs div container,
you can use the GMap2.fromLatLngToDivPixel()method. By converting the latitude and longi tude
into a pixel location, you can then use the pixel location to help position other elements of your
web application relative to the map objects. Take a quick look at Listing 9-1, where the mousemove
event is used to log the pixel location of the cursor on the map.

Listing 9-1. Tracking the Mouse on the Map

var map;
var centerLatitude = 43.49462;
var centerLongitude = -80.548239;
var startZoom = 3;

function init() {

map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

GEvent.addListener(map,'mousemove',function(latlng) {
var pixelLocation = map.fromLatLngToDivPixel(latlng);
GLog.write('ll:' + latlng + ' at:' + pixelLocation);

});
}
window.onload = init;

Moving around the map, the GLogwindow reveals the latitude and longitude location of the
cursor, along with the pixel location relative to the top-left corner of the map div , as shown in
Figure 9-3.

CHAPTER 9� ADVANCED TIPS AND TRICKS211

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 211

Figure 9-3.Tracking the mouse movement relative to the map container

Once you have the pixel location from GMap2.fromLatLngToDivPixel(), you can turn it into
a location relative to the screen or window by applying additional calculations appropriate to
the design and layout of your web application.

� Tip For more information about JavaScript and using it to interact with your web page, pick upDOM Scripting:
Web Design with JavaScript and the Document Object Model ,by Jeremy Keith (http://www.friend sofed.com/
book.html?isbn=1590595335). It covers everything you need to know when using JavaScript to add
dynamic enhancements to web pages and program Ajax-style applications.

Force Triggering Events with GEvent
The GEventobject, introduced in Chapter 3, lets you run code when specific events are triggered
on particular objects. You can attach events to markers, the map, DOM objects, info windows,
overlays, and any other object on your map. In earlier chapters, youÕve used the click event to
create markers and the zoomendevent to load data from the server. These work great if your users
are interacting with the map, but what happens if theyÕre interacting with some other part of the
web application and you want those objects to trigger these events? In those cases, you can use
the trigger() method of the GEventclass to force the event to run.

For example, suppose you create an event that runs when the zoom level is changed on
your map using the zoomendevent, and itÕs logged to the GLogwindow:

CHAPTER 9� ADVANCED TIPS AND TRICKS212

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 212

GEvent.addListener(map,'zoomend',function(oldLevel, newLevel) {
//some other code
GLog.write('Zoom changed from ' + oldLevel + ' to ' + newLevel);

});

If you adjust the zoom level of your map, youÕll get a log entry that looks something like
Figure 9-4.

Figure 9-4.GLog entry after changing zoom levels using the zoom control

Notice in Figure 9-4 how the old and new zoom levels are specified. From elsewhere in your
web application, you can force the zoomendevent to execute by calling

GEvent.trigger(map,'zoomend');

Executing this method will cause the zoomendevent to run as normal. The problem is that
youÕll get undefined values for both oldLevel and newLevel, as shown in Figure 9-5.

Figure 9-5.GLog entries after triggering zoomend using GEvent.trigger(map,'zoomend')

The same applies for any event that passes arguments into its trigger function. If the API
canÕt determine what to pass, youÕll get an undefined value.

To overcome this problem, you can pass additional arguments after the trigger() event
argument, and theyÕll be passed as the arguments to the event handler function. For example,
calling

GEvent.trigger(map,'zoomend',3,5);

would pass 3as the oldLevel and 5as the newLevel. But unless you changed the zoom level of the
map some other way, the zoom level wouldnÕt actually change, since youÕve manually forced
the zoomendevent without calling any of the zoom-related methods of the map.

CHAPTER 9� ADVANCED TIPS AND TRICKS213

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 213

Creating Your Own Events
Along with triggering the existing events from the API, GEvent.trigger() can also be used to
trigger your own events. For example, you could create an updateMessageevent to trigger a script
to execute when a message box is updated, as follows:

var message = document.getElementById('messageBox');
GEvent.addDomListener(message,'updateMessage',function() {

//whatever code you want
if(message.innerHtml != '') alert('The system reported messages.');

});

Then, elsewhere in your application, you can update the message and trigger the
updateMessageevent using the GEvent.trigger() method:

var message = document.getElementById('messageBox');
if (error) {

message.innerHtml = 'There was an error with the script.';
} else {

message.innerHtml = '';
}
GEvent.trigger(message,'updateMessage');

Creating Map Objects with GOverlay
In Chapter 7, you saw how to use GOverlayto create an image that could hover over a location on
a map to show more detail. In that instance, the overlay consisted of a simple HTML div element
with a background image, similar to the Rectangle example in the Google Maps API documenta tion
(http://www.google.com/apis/maps/documentation/#Custom_Overlays). Beyond just a simple div ,
the overlay can contain any HTML you want and therefore can include anything you could create
in a web page. Even GoogleÕs info window is really just a fancy overlay, so you could create your
own overlay with whatever features you want.

� CautionAdding your own overlays will influence the limitations of the map the same way the markers did in
Chapter 7. In fact, your overlays will probably be much more influential, as they will be more complicated and
weighty than the simpler marker overlay.

Choosing the Pane for the Overlay
Before you create your overlay, you should familiarize yourself with the GMapPaneconstants.
GMapPaneis a group of constants that define the various layers of the Google map, as repre sented
in Figure 9-6.

CHAPTER 9� ADVANCED TIPS AND TRICKS214

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 214

Figure 9-6.GMapPane constants layering

At the lowest level, flat against the map tiles, lies the G_MAP_MAP_PANE. This pane is used to hold
objects that are directly on top of the map, such as polylines. Next up are the G_MAP_MARKER_
SHADOW_PANEand G_MAP_MARKER_PANE. As the names suggest, they hold the shadows and icons for
each of the GMarkerobjects on the map. The shadow and icon layers are separated, so the shadows
donÕt fall on top of the icons when markers are clustered tightly together.

The next layer above that is the G_MAP_FLOAT_SHADOW_PANE, which is where the shadow of the
info window will reside. This pane is above the markers so the shadow of the info window will be
cast over the markers on the map.

The next layer, G_MAP_MARKER_MOUSE_TARGET_PANE, is an ingenious trick. The mouse events
for markers are not actually attached to the markers on the marker pane. An invisible object,
hovering in the mouse target pane, captures the events, allowing clicks to be registered on the
markers hidden in the shadow of the info window. Without this separate mouse target pane, clicks
on the covered markers wouldnÕt register, as the info windowÕs shadow would cover the markers,
and in most browsers, only the top object can be clicked.

Finally, on top of everything else, is the G_MAP_FLOAT_PANE. The float pane is the topmost pane
and is used to hold things like the info window or any other overlays you want to appear on top.

When you create your overlay object, you need to decide which of the six panes is best suited.
If your overlay has a shadow, like the custom info window presented later in Listing 9-5, youÕll need
to target two panes.

To retrieve and target the DOM object for each pane, you can use the GMap2.getPane()
method. For example, to add a div tag to the float pane, you would do something similar to this:

div = document.createElement('div');
pane = map.getPane(G_MAP_FLOAT_PANE);
pane.appendChild(div);

Obviously, your code surrounding this would be a little more involved, but you get the idea.

CHAPTER 9� ADVANCED TIPS AND TRICKS215

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 215

Creating a Quick Tool Tip Overlay
For an easy GOverlayexample, letÕs create an overlay for markers that acts as a tool tip, containing
just a single line of text in a colored box, as shown in Figure 9-7.

Figure 9-7.Tool tip overlay

Listing 9-2 shows the code for the tool tip overlay.

Listing 9-2. ToolTip Overlay Object

//create the ToolTip overlay object
function ToolTip(marker,html,width) {

this.html_ = html;
this.width_ = (width ? width + 'px' : 'auto');
this.marker_ = marker;

}

ToolTip.prototype = new GOverlay();

ToolTip.prototype.initialize = function(map) {
var div = document.createElement("div");
div.style.display = 'none';
map.getPane(G_MAP_FLOAT_PANE).appendChild(div);
this.map_ = map;
this.container_ = div;

}

ToolTip.prototype.remove = function() {
this.container_.parentNode.removeChild(this.container_);

}

CHAPTER 9� ADVANCED TIPS AND TRICKS216

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 216

ToolTip.prototype.copy = function() {
return new ToolTip(this.html_);

}

ToolTip.prototype.redraw = function(force) {
if (!force) return;
var pixelLocation = this.map_.fromLatLngToDivPixel(this.marker_.getPoint());
this.container_.innerHTML = this.html_;
this.container_.style.position = 'absolute';
this.container_.style.left = pixelLocation.x + "px";
this.container_.style.top = pixelLocation.y + "px";
this.container_.style.width = this.width_;
this.container_.style.font = 'bold 10px/10px verdana, arial, sans';
this.container_.style.border = '1px solid black';
this.container_.style.background = 'yellow';
this.container_.style.padding = '4px';

//one line to desired width
this.container_.style.whiteSpace = 'nowrap';
if(this.width_ != 'auto') this.container_.style.overflow = 'hidden';

this.container_.style.display = 'block';
}

GMarker.prototype.ToolTipInstance = null;
GMarker.prototype.openToolTip = function(content) {

//don't show the tool tip if there is a custom info window
if(this.ToolTipInstance == null) {

this.ToolTipInstance = new ToolTip(this,content)
map.addOverlay(this.ToolTipInstance);

}
}
GMarker.prototype.closeToolTip = function() {

if(this.ToolTipInstance != null) {
map.removeOverlay(this.ToolTipInstance);
this.ToolTipInstance = null;

}
}

Now letÕs see how it works.

Creating the GOverlay Object

To create the tool tip GOverlay, as listed in Listing 9-2, start by writing a function with the name
you would like to use for your overlay and pass in any parameters you would like to include. For
example, the arguments for the ToolTip overlay constructor in Listing 9-2 are the markerto attach
the tool tip to and the HTML to display in the tool tip . For more control, thereÕs also an optional
width to force the tool tip to a certain size:

CHAPTER 9� ADVANCED TIPS AND TRICKS217

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 217

function ToolTip(marker,html,width) {
this.html_ = html;
this.width_ = (width ? width + 'px' : 'auto');
this.marker_ = marker;

}

This function, ToolTip , will act as the constructor for your ToolTip class. Once finished, you
would instantiate the object by creating a new instance of the ToolTip class:

var tip = new ToolTip(marker,'This is a marker');

When assigning properties to the class, such as html , itÕs always good to distinguish the
internal properties using something like an underscore, such as this.html_ . This makes it easy
to recognize internal properties, and also ensure that you donÕt accidentally overwrite a property
of the GOverlayclass, if Google has used html as a property for the GOverlayclass.

Next, instantiate the GOverlayas the prototype for your new ToolTip function:

ToolTip.prototype = new GOverlay();

Creating and Positioning the Container

For the guts of your ToolTip class, you need to prototype the four required methods listed in
Table 9-1.

Table 9-1.Abstract Methods of the GOverlay Object

Method Description

initialize() Called by GMap2.addOverlay()when the overlay is added to the map

redraw(force) Executed once when the object is initially created and then again whenever
the map display changes; force will be true in the event the API recalculates
the coordinates of the map

remove() Called when removeOverlay() methods are used

copy() Should return an uninitialized copy of the same object

First, start by prototyping the initialize() function:

ToolTip.prototype.initialize = function(map) {
var div = document.createElement("div");
div.style.display='none';
map.getPane(G_MAP_FLOAT_PANE).appendChild(div);
this.map_ = map;
this.container_ = div;

}

The initialize() method is called by GMap2.addOverlay()when the overlay is initially
added to the map. Use it to create the initial div , or other element, and to attach the div to the
appropr iate pane using map.getPane(). Also, you probably want to assign the mapvariable to an
internal variable so youÕll still have access to it from inside the other methods of the ToolTip object.

Next, prototype the redraw() method:

CHAPTER 9� ADVANCED TIPS AND TRICKS218

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 218

ToolTip.prototype.redraw = function(force) {
if (!force) return;
var pixelLocation = this.map_.fromLatLngToDivPixel(this.marker_.getPoint());
this.container_.innerHTML = this.html_;
this.container_.style.position='absolute';
this.container_.style.left = pixelLocation.x + "px";
this.container_.style.top = pixelLocation.y + "px";

- cut -

this.container_.style.display = 'block';
}

The redraw() method is executed once when the object is initially created and then again
whenever the map display changes. The force flag will be true only in the event the API needs
to recalculate the coordinates of the map, such as when the zoom level changes or the pixel offset
of the map has changed. ItÕs also true when the overlay is initially created so the object can be
drawn. For your ToolTip object, the redraw() method should stylize the container_ div element
and position it relative to the location of the marker. In the event that a width was provided, the
div should also be defined accordingly, as it is in Listing 9-2.

Lastly, you should prototype the copy() and remove() methods:

ToolTip.prototype.remove = function() {
this.container_.parentNode.removeChild(this.container_);

}

ToolTip.prototype.copy = function() {
return new ToolTip(this.marker_,this.html_,this.width_);

}

The copy() method should return an uninitialized copy of the same object to the map. The
remove() method should remove the existing object from the pane.

Using Your New Tool Tip Control

At the bottom of Listing 9-2 youÕll also notice the addition of a few prototype methods on
the GMarkerclass. These give you a nice API for your new ToolTip object by allowing you to call
GMarker.openToolTip('This is a marker') to instantiate the tool tip; GMarker.closeToolTip()
will close the tool tip.

Now you can create a marker and add a few event listeners, and youÕll have a tool tip that
shows on mouseover, similar to the one shown earlier in Figure 9-7:

var marker = new GMarker(new GLatLng(43, -80));

GEvent.addListener(marker,'mouseover',function() {
marker.openToolTip('This is a GMarker!');

});
GEvent.addListener(marker,'mouseout',function() {

marker.closeToolTip();
});
map.addOverlay(marker);

CHAPTER 9� ADVANCED TIPS AND TRICKS219

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 219

The ToolTip overlay is relatively simple but very useful. Later in the chapter, youÕll revisit
the GOverlayobject when you create an overlay thatÕs a little more complicated, to serve as your
own customized info window (Listing 9-5).

Creating Custom Controls
Overlays are useful, but they generally apply to something on the map fixed to a latitude and
longitude. When you drag the map, the overlays go with it. If you want to create a control or other
object on the map thatÕs fixed to a relative location within the map container, similar to the zoom
control or the map type buttons, youÕll need to implement a GControl interface.

Six controls are built into the Google Maps API, as youÕve seen throughout the book. Along
with version 1Õs GSmallMapControl, GLargeMapControl, GSmallZoomControl, and GMapTypeControl,
the controls GScaleControl and GOverviewMapControl(which shows a little overview window in
the corner of the screen) were introduced in version 2 of the API. Depending on your applica tion
and features, you can enable or disable the controls so your users can have varying degrees of
control over the map.

If these controls donÕt suit your needs, you can implement a custom control that replicates
the functionality of one of GoogleÕs existing controls, or create something completely different.
For example, the Google Maps API documentation at http://www.google.ca/apis/maps/
documentation/#Custom_Controls provides an example of a textual zoom control. The Google
TextualZoomControl creates the text-based Zoom In and Zoom Out buttons shown in F igure 9-8
and is an alternative to the GSmallMapControl.

Figure 9-8.The Google textual zoom control adds Zoom In and Zoom Out buttons.

As an example, weÕll show you how to create a custom icon control. After all the hard work
youÕve poured into your web application, it might be nice to promote yourself a little and put your
company logo down in the corner next to GoogleÕs. After all, a little promotion never hurt anyone.
Implementing the icon control in Figure 9-9 is relatively simple, as you can see in Listing 9-3,
and itÕs a great example you can further expand on.

CHAPTER 9� ADVANCED TIPS AND TRICKS220

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 220

Figure 9-9.A promotional map control, clickable to a supplied link

Listing 9-3. Promotional Icon PromoControl

var PromoControl = function(url) {
this.url_ = url;

};

PromoControl.prototype = new GControl(true);

PromoControl.prototype.initialize = function(map) {
var container = document.createElement("div");
container.innerHTML = '<img style="cursor:pointer" �

src="http://googlemapsbook.com/PromoApress.png" border="0">';
container.style.width='120px';
container.style.height='32px';
url = this.url_;
GEvent.addDomListener(container, "click", function() {

document.location = url;
});
map.getContainer().appendChild(container);
return container;

};

PromoControl.prototype.getDefaultPosition = function() {
return new GControlPosition(G_ANCHOR_BOTTOM_LEFT, new GSize(70, 0));

};

The following sections describe how Listing 9-3 works.

CHAPTER 9� ADVANCED TIPS AND TRICKS221

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 221

Creating the Control Object
To create your promo GControl object, start the same way you did with the GOverlayin the
previous example. Create a function with the appropriate name, but use the prototype object
to instantiate the GControl class.

var PromoControl = function(url) {
this.url_ = url;

};
PromoControl.prototype = new GControl(true);

By passing in aurl parameter, your PromoControlcan be clickable to the supplied url and you
can reuse the PromoControlfor different URLs, depending on your various mapping applications.

Creating the Container
Next, there are only two methods you need to prototype. First is the initialize() method, which
is similar to the initialize() method from the GOverlayexample:

PromoControl.prototype.initialize = function(map) {
var container = document.createElement("div");
container.innerHTML = '<img src="http://goog lemapsbook.com/PromoApress.png"�

border="0">';
container.style.width='120px';
container.style.height='32px';
url = this.url_;
GEvent.addDomListener(container, "click", function() {

document.location = url;
});
map.getContainer().appendChild(container);
return container;

};

The difference is the GOverlay.initialize() method will be called by the GMap2.addControl()
method when you add the control to your map. In the case of GControl, the container div for the
control is attached to the mapÕs container DOM object returned from the GMap2.getContainer()
method. Also, you can add events such as the click event to the container using the GEvent.
addDomListener() method. For more advanced controls, you can include any HTML you want
and apply multiple events to the various parts of the control. For the PromoControl, youÕre simply
including an image that links to the supplied URL, so one click event can be attached to the
entire container.

Positioning the Container
Last, you need to position the PromoControlwithin the map container by returning a new instance
of the GControlPostion class from the getDefaultPosition prototype:

CHAPTER 9� ADVANCED TIPS AND TRICKS222

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 222

PromoControl.prototype.getDefaultPosition = function() {
return new GControlPosition(G_ANCHOR_BOTTOM_LEFT, new GSize(70, 0));

};

The GControlPosition represents the anchor point and offset where the control should reside.
To anchor the control to the map container, you can use one of four constants:

¥ G_ANCHOR_TOP_RIGHTto anchor to the top-right corner

¥ G_ANCHOR_TOP_LEFTto anchor to the top-left corner

¥ G_ANCHOR_BOTTOM_RIGHTto anchor to the bottom-right corner

¥ G_ANCHOR_BOTTOM_LEFTto anchor to the bottom-left corner

Once anchored, you can then offset the control by the desired distance. For the PromoControl ,
anchoring to just G_ANCHOR_BOTTOM_LEFTwould interfere with the Google logo, thus going against
the Terms and Conditions of the API. To fix this, you offset your control using a new GSizeobject
with an X offset of 70 pixels, the width of the Google logo.

� CautionIf you plan on using the GScaleControl as well, remember that it too will occupy the space next
to the Google logo, so youÕll need to adjust your PromoControlaccordingly.

Using the Control
With your PromoControlfinished, you can add it to your map using the same GMap2.addControl()
method and a new instance of your PromoControl:

map.addControl(new PromoControl('http://googlemapsbook.com'));

YouÕll end up with your logo positioned neatly next to the Google logo, linked to wherever
you like, as shown earlier in Figure 9-9.

Adding Tabs to Info Windows
If youÕre happy with the look of the Google info window, or you donÕt have the time or budget
to create your own info window overlay, there are a few new features of the Google Maps API
version 2 info window that you may find useful. With version 1 of the Google Maps API, the info
window was just the stylized bubble with a close box, as shown in Figure 9-10. You could add
tabs, but the limit was two tabs and doing so required hacks and methods that were not Òoffi cialÓ
parts of the API.

CHAPTER 9� ADVANCED TIPS AND TRICKS223

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 223

Figure 9-10.The version 1 info window

Creating a Tabbed Info Window
With version 2 of the API, Google has added many tab-related features to its info windows. You
can have multiple tabs on each info window, as shown in Figure 9-11, and you can change the tabs
from within the API using various GInfoWindowmethods, as shown in Listing 9-4.

Figure 9-11.A tabbed info window

CHAPTER 9� ADVANCED TIPS AND TRICKS224

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 224

Listing 9-4. Info Window with Three Tabs

map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(centerLatitude, centerLongitude), startZoom);

marker = new GMarker(new GLatLng(centerLatitude, centerLongitude));
map.addOverlay(marker);

var infoTabs = [
new GInfoWindowTab("Tab A", "This is tab A content"),
new GInfoWindowTab("Tab B", "This is tab B content"),
new GInfoWindowTab("Tab C", "This is tab C content")

];

marker.openInfoWindowTabsHtml(infoTabs,{
selectedTab:1,
maxWidth:300

});

GEvent.addListener(marker,'click',function() {
marker.openInfoWindowTabsHtml(infoTabs);

});

To create the info window with three tabs in Figure 9-11, you simply create an array of
GInfoWindowTabobjects:

var infoTabs = [
new GInfoWindowTab("Tab A", "This is tab A content"),
new GInfoWindowTab("Tab B", "This is tab B content"),
new GInfoWindowTab("Tab C", "This is tab C content")

];

Then use GMarker.openInfoWindowTabsHtml()to create the window in r ight away:

marker.openInfoWindowTabsHtml(infoTabs,{
selectedTab:1,
maxWidth:300

});

or in an event:

GEvent.addListener(marker,'click',function() {
marker.openInfoWindowTabsHtml(infoTabs);

});

Additionally, you can define optional parameters for the tabbed info window the same way
you can define options using the GMarker.openInfoWindowmethods.

CHAPTER 9� ADVANCED TIPS AND TRICKS225

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 225

Gathering Info Window Information and Changing Tabs
If other parts of your web application need to interact with the various tabs on your info window,
things get a little trickier. When the tabbed info window is created, the API instantiates the object
for you, so you donÕt actually have direct access to the info window object yet. As you saw in
Chapter 3, there is only one instance of an info window on a map at a time, so you can use the
GMap2.getInfoWindow() method to retrieve a handle for the current info window:

var windowHandle = map.getInfoWindow();

With the handle, you can then use any of the GInfoWindowmethods to retrieve information
or perform various operations, such as the following:

¥ Retrieve the latitude and longitude of the window anchor:

windowHandle.getPoint();

¥ Hide the window:

windowHandle.hide();

¥ Switch to another tab:

windowHandle.selectTab(2);

For a full list of the GInfoWindowmethods, see the API in Appendix B.

Creating a Custom Info Window
If you follow the Google Maps discussion group (http://groups.google.com/group/
Google-Maps-API), youÕll notice daily posts regarding feature requests for the info window. Feature
requests are great, but most people donÕt realize the info window isnÕt really anything special. ItÕs
just another GOverlaywith a lot of extra features. With a little JavaScript and GOverlay, you can
create your very own info window with whatever features you want to integrate. To get you started,
weÕll show you how to create the new info window in Figure 9-12, which occupies a little less
screen real estate, but offers you a starting point to add on your own features.

Figure 9-12.A custom info window

CHAPTER 9� ADVANCED TIPS AND TRICKS226

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 226

To begin, youÕll need to open up your favorite graphics program and create the frame for the
window. If you just need a box, then itÕs not much more difficult then the ToolTip object you
created earlier. For this example, we used the Adobe Photoshop PSD file youÕll find with the code
accompanying this book, as illustrated in Figure 9-13. Once you have your info window work ing,
feel free to modify it any way you want. You can edit the PSD file or create one of your own. For
now, create a folder called littleWindow in your working directory and copy the accompanying
presliced PNG files from the littleWindow folder in the Chapter 9 source code.

Figure 9-13.The info window art file

The finalized framework for the LittleInfoWindow overlay in Listing 9-5 is almost identi cal to
the ToolTip overlay you created earlier in Listing 9-3, but the internals of each function are
quite different.

Listing 9-5. The LittleInfoWindow Object

//create the LittleInfoWindow overlay onject
function LittleInfoWindow(marker,html,width) {

this.html_ = html;
this.width_ = (width ? width + 'px' : 'auto');
this.marker_ = marker;

}

//use the GOverlay class
LittleInfoWindow.prototype = new GOverlay();

//initialize the container and shadowContainer
LittleInfoWindow.prototype.initialize = function(map) {

this.map_ = map;

var container = document.createElement("div");
container.style.display='none';
map.getPane(G_MAP_FLOAT_PANE).appendChild(container);
this.container_ = container;

CHAPTER 9� ADVANCED TIPS AND TRICKS227

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 227

var shadowContainer = document.createElement("div");
shadowContainer.style.display='none';
map.getPane(G_MAP_FLOAT_SHADOW_PANE).appendChild(shadowContainer);
this.shadowContainer_ = shadowContainer;

}

LittleInfoWindow.prototype.remove = function() {
this.container_.parentNode.removeChild(this.container_);

//don't forget to remove the shadow as well
this.shadowContainer_.parentNode.removeChild(this.shadowContainer_);

}

LittleInfoWindow.prototype.copy = function() {
return new LittleInfoWindow(this.marker_,this.html_,this.width_);

}

LittleInfoWindow.prototype.redraw = function(force) {
if (!force) return;

//get the content div
var content = document.createElement("span");
content.innerHTML = this.html_;
content.style.font='10px verdana';
content.style.margin='0';
content.style.padding='0';
content.style.border='0';
content.style.display='inline';

if(!this.width_ || this.width_=='auto' || this.width_ <= 0) {
//the width is unknown so set a rough maximum and minimum
content.style.minWidth = '10px';
content.style.maxWidth = '500px';
content.style.width = 'auto';

} else {
//the width was set when creating the window
content.style.width= width + 'px';

}

//make it invisible for now
content.style.visibility='hidden';

//temporarily append the content to the map container
this.map_.getContainer().appendChild(content);

//retrieve the rendered width and height
var contentWidth = content.offsetWidth;
var contentHeight = content.offsetHeight;

CHAPTER 9� ADVANCED TIPS AND TRICKS228

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 228

//remove the content from the map
content.parentNode.removeChild(content);
content.style.visibility='visible';

//set the width and height to ensure they
//stay that size when drawn again
content.style.width=contentWidth+'px';
content.style.height=contentHeight+'px';

//set up the actual position relative to your images
content.style.position='absolute';
content.style.left='5px';
content.style.top='7px';
content.style.background='white';

//create the wrapper for the window
var wrapper = document.createElement("div");

//first append the content so the wrapper is above
wrapper.appendChild(content);

//create an object to reference each image
var wrapperParts = {

tl:{l:0, t:0, w:5, h:7},
t:{l:5, t:0, w:(contentWidth-6), h:7},
tr:{l:(contentWidth-1), t:0, w:11, h:9},
l:{l:0, t:7, w:5, h:contentHeight},
r:{l:(contentWidth+5), t:9, w:5, h:(contentHeight-2)},
bl:{l:0, t:(contentHeight+7), w:5, h:5},
p:{l:5, t:(contentHeight+7), w:17, h:18},
b:{l:22, t:(contentHeight+7), w:(contentWidth-17), h:5},
br:{l:(contentWidth+5), t:(contentHeight+7), w:5, h:5}

}

//create the image DOM objects
for (i in wrapperParts) {

var img = document.createElement('img');

//load the image from your local image directory
//based on the property name of the wrapperParts object
img.src = 'littleWindow/' + i + '.png';

//set the appropriate positioning attributes
img.style.position='absolute';
img.style.top=wrapperParts[i].t+'px';
img.style.left=wrapperParts[i].l+'px';
img.style.width=wrapperParts[i].w+'px';

CHAPTER 9� ADVANCED TIPS AND TRICKS229

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 229

img.style.height=wrapperParts[i].h+'px';
wrapper.appendChild(img);
wrapperParts[i].img = img;

}

//add any event handlers like the close box
var marker = this.marker_;
GEvent.addDomListener(wrapperParts.tr.img, "click", function() {

marker.closeLittleInfoWindow();
});

//get the X,Y pixel location of the marker
var pixelLocation = this.map_.fromLatLngToDivPixel(

this.marker_.getPoint()
);

//position the container div for the window
this.container_.style.position='absolute';
this.container_.style.left = (pixelLocation.x-3) + "px";
this.container_.style.top = (pixelLocation.y

- contentHeight
- 25
- this.marker_.getIcon().iconSize.height

) + "px";
this.container_.style.border = '0';
this.container_.style.margin = '0';
this.container_.style.padding = '0';
this.container_.style.display = 'block';

//append the styled info window to the container
this.container_.appendChild(wrapper);

//add a shadow
this.shadowContainer_.style.position='absolute';
this.shadowContainer_.style.left = (pixelLocation.x+15) + "px";
this.shadowContainer_.style.top = (pixelLocation.y

- 10
- this.marker_.getIcon().iconSize.height

) + "px";
this.shadowContainer_.style.border = '1px solid black';
this.shadowContainer_.style.margin = '0';
this.shadowContainer_.style.padding = '0';
this.shadowContainer_.style.display = 'block';

var shadowParts = {
sl:{l:0, t:0, w:35, h:26},
s:{l:35, t:0, w:(contentWidth-40), h:26},

CHAPTER 9� ADVANCED TIPS AND TRICKS230

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 230

sr:{l:(contentWidth-5), t:0, w:35, h:26}
}

for (i in shadowParts) {
var img = document.createElement('img');
img.src = 'littleWindow/' + i + '.png';
img.style.position='absolute';
img.style.top=shadowParts[i].t+'px';
img.style.left=shadowParts[i].l+'px';
img.style.width=shadowParts[i].w+'px';
img.style.height=shadowParts[i].h+'px';
this.shadowContainer_.appendChild(img);

}

//pan if necessary so it shows on the screen
var mapNE = this.map_.fromLatLngToDivPixel(

this.map_.getBounds().getNorthEast()
);
var panX=0;
var panY=0;
if(this.container_.offsetTop < mapNE.y) {

//top of window is above the top edge of the map container
panY = mapNE.y - this.container_.offsetTop;

}
if(this.container_.offsetLeft+contentWidth+10 > mapNE.x) {

//right edge of window is outside the right edge of the map container
panX = (this.container_.offsetLeft+contentWidth+10) - mapNE.x;

}

if(panX!=0 || panY!=0) {
//pan the map
this.map_.panBy(new GSize(-panX-10,panY+30));

}
}

//add a new method to GMarker so you
//can use a similar API to the existing info window.
GMarker.prototype.LittleInfoWindowInstance = null;
GMarker.prototype.openLittleInfoWindow = function(content,width) {

if(this.LittleInfoWindowInstance == null) {
this.LittleInfoWindowInstance = new LittleInfoWindow(

this,
content,
width

);
map.addOverlay(this.LittleInfoWindowInstance);

}
}

CHAPTER 9� ADVANCED TIPS AND TRICKS231

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 231

GMarker.prototype.closeLittleInfoWindow = function() {
if(this.LittleInfoWindowInstance != null) {

map.removeOverlay(this.LittleInfoWindowInstance);
this.LittleInfoWindowInstance = null;

}
}

The following sections describe how this code works.

Creating the Overlay Object and Containers
Similar to the Google info window, your info window will require three inputs: a marker on which
to anchor the window, the HTML content to display, and an optional width. When you extend
this example for use in your own web application, youÕll probably add more input parameters
or additional methods. You could also add the various methods and properties of the existing
GInfoWindowclass so that your class provides the same API as GoogleÕs info window, with tabs and
an assortment of options. To keep things simple in the example, we stick to the essentials.

Like the ToolTip object you created earlier, the LittleInfoWindow object in Listing 9-5 starts
off the same way. The LittleInfoWindow function provides a construction using the marker, html ,
and width arguments, while the GOverlayis instantiated as the prototype object. The first big
difference comes in the initialize() method where you create two containers. The first
container, for the info window, is attached to the G_MAP_FLOAT_PANEpane:

var container = document.createElement("div");
container.style.display='none';
map.getPane(G_MAP_FLOAT_PANE).appendChild(container);
this.container_ = container;

And the second container, for the info windowÕs shadow, is attached to the G_MAP_FLOAT_
SHADOW_PANEpane:

var shadowContainer = document.createElement("div");
shadowContainer.style.display='none';
map.getPane(G_MAP_FLOAT_SHADOW_PANE).appendChild(shadowContainer);
this.shadowContainer_ = shadowContainer;

� Tip A shadow isnÕt required for overlays, but it provides a nice finishing touch to the final map and makes
your web application look much more polished and complete.

Next, the remove() and copy() methods are again identical in functionality to the ToolTip
overlay, except the remove() method also removes the second shadowContaineralong with the
info window container.

Drawing a LittleInfoWindow
The most complicated part of creating an info window is properly positioning it on the screen
with the redraw() method, and the problem occurs only when you want to position it abovethe
existing marker or point.

CHAPTER 9� ADVANCED TIPS AND TRICKS232

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 232

When rendering HTML, the page is drawn on the screen top down and left to right. You can
assign sizes and positions to html elements using CSS attributes, but in general, if there are no sizes
or positions, things will start at the top and flow down. When you create the info window in the
redraw() method, youÕll take the HTML passed into the constructor, put it in a content div , and
wrap it with the appropriate style. On an empty HTML page, you know the top-left corner of the
content div is at (0,0), but where is the bottom-right corner? The bottom-right corner is dependent
on the content of the div and the general style of the div itself.

The ambiguity in the size of the div is compounded when you want to position the div on
the map. The Google Maps API requires you to position the overlay using absolute positioning.
To properly position the info window, so the arrow is pointing at the marker, you need to know
the height of the info window, but as we said, the height varies based on the content. Luckily for
you, browsers have a little-known feature that allows you to access the rendered position and
size of elements on a web page.

Determining the Size of the Container

When creating the redraw() function, the first thing youÕll do is put the HTML into a content div
and apply the appropriate base styles to the div :

var content = document.createElement("div");
content.innerHTML = this.html_;
content.style.font='10px verdana';
content.style.margin='0';
content.style.padding='0';
content.style.border='0';
content.style.display='inline';

if(!this.width_ || this.width_=='auto' || this.width_ <= 0) {
//the width is unknown so set a rough maximum and minimum
content.style.minWidth = '10px';
content.style.maxWidth = '500px';
content.style.width = 'auto';

} else {
//the width was set when creating the window
content.style.width= width + 'px';

}

//make it invisible for now.
content.style.visibility='hidden';

The display='inline' and the last style attribute, visibility='hidden' , are important for
the next step. To determine the div Õs rendered position and size properties, you need to access
hidden properties of the div elements. When rendered on the page, browsers attach offset XXX
properties. where the XXXis Left , Right , Width, or Height. These give you the position and size, in
pixels, of the DOM element after itÕs rendered. For your info window, youÕre concerned with the
offsetWidth and offsetHeight , as youÕll need them to calculate the overall size of the window.

To access the offset variables, youÕll first need to render the content div on the page. At this
point in the overlay, the content DOM element exists only in the browserÕs memory and hasnÕt

CHAPTER 9� ADVANCED TIPS AND TRICKS233

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 233

been ÒdrawnÓ yet. To do so, append the content to the map container and retrieve the width and
height before removing it again from the map container:

this.map_.getContainer().appendChild(content);
var contentWidth = content.offsetWidth;
var contentHeight = content.offsetHeight;
content.parentNode.removeChild(content);
content.style.visibility='visible';

//set the width and height to ensure they stay that size when drawn again.
content.style.width=contentWidth+'px';
content.style.height=contentHeight+'px'

The brief existence of the content div inside the map container allowed the browser to set
the offset properties so you could retrieve the offsetWidth and offsetHeight . As we mentioned,
the inline display and the hidden visibility are important to retrieving the correct size. When the
display is inline , the bounding div collapses to the size of the actual content, rather than
expanding to a width of 100%, giving you an accurate width. Setting the visibility to hidden
prevents the content from possibly flashing on the screen for a moment, but at the same time,
preserves the size and shape of the div .

Building the Wrapper

Now that you have the size of the content box, the rest is pretty straightforward. First, style the
content accordingly and create another div , the wrapper, to contain the content and the addi tional
images for the eye candy bubble wrapper from Figure 9-13.

content.style.position='absolute';
content.style.left='5px';
content.style.top='7px';
content.style.background='white';
var wrapper = document.createElement("div");
wrapper.appendChild(content);

To minimize the HTML required for the LittleInfoWindow , the images in the wrapper can
be positioned using absolute positioning. The sample wrapper consists of nine separate images:
four corners, four sides, and an additional protruding arm, as outlined in Figure 9-14 (along with
the shadow and marker images). To give the new info window a similar feel to GoogleÕs info window,
the upper-right corner has also been styled with an X in the graphic to act as the close box.

Figure 9-14.Outlined images for the LittleInfoWindow wrapper

CHAPTER 9� ADVANCED TIPS AND TRICKS234

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 234

To create the wrapper object in Listing 9-5, you could use the innerHTMLproperty to add
the images using regular HTML, but that wouldnÕt allow you to easily attach event listeners to the
images. By creating each image as a DOM object:

var wrapperParts = {
tl:{l:0, t:0, w:5, h:7},
t:{l:5, t:0, w:(contentWidth-6), h:7},
- cut -

}

//create the images
for (i in wrapperParts) {

var img = document.createElement('img');
- cut -
wrapper.appendChild(img);
wrapperParts[i].img = img;

}

and using the wrapper.appendChild() method, you can then attach event listeners directly to
image DOM elements, as when you want to add a click event to the close box:

var marker = this.marker_;
GEvent.addDomListener(wrapperParts.tr.img, "click", function() {

marker.closeLittleInfoWindow();
});

Now all thatÕs left to do with the LittleInfoWindow container is position it on the map and
append the wrapper. The design of the LittleInfoWindow has the arm protruding in the lower-left
corner, so youÕll want to position the top of the container so that the arm rests just above the
marker. You can get the markerÕs position using the GMap2.fromLatLngToDivPixel() method you
saw earlier in the chapter, and then use the calculated height of the LittleInfoWindow plus the
height of the marker icon to determine the final resting position:

var pixelLocation = this.map_.fromLatLngToDivPixel(this.marker_.getPoint());
this.container_.style.position='absolute';
this.container_.style.left = (pixelLocation.x-3) + "px";
this.container_.style.top = (pixelLocation.y

- contentHeight
- 25
- this.marker_.getIcon().iconSize.height

) + "px";
this.container_.style.display = 'block';

this.container_.appendChild(wrapper);

Adding a Few Shades of Finesse

Your LittleInfoWindow should now be working, but a few tasks remain before we can call it
complete. First, letÕs add a shadow to the window similar to the one on GoogleÕs info window. The
shadow images are also supplied in the PSD files accompanying the book. The process for adding

CHAPTER 9� ADVANCED TIPS AND TRICKS235

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 235

the shadow is similar to the wrapper you just created. We wonÕt go through it again here, but you
can take a look at the complete code in Listing 9-5 and see the example there. The shadow, in this
case, expands only horizontally with the size of the wrapper, but you could easily add vertical
expansion as well.

Listing 9-5 also includes some pan adjustments when your window initially opens. The nice
thing about the GoogleÕs info window is when it opens off-screen, the map pans until the window
is visible on-screen. You can easily add this same functionality by comparing the upper-right
corner of your LittleInfoWindow with the top and right edges of the map container:

var mapNE = this.map_.fromLatLngToDivPixel(this.map_.getBounds().getNorthEast());
var panX=0;
var panY=0;
if(this.container_.offsetTop < mapNE.y) {

panY = mapNE.y - this.container_.offsetTop;
}
if(this.container_.offsetLeft+contentWidth+10 > mapNE.x) {

panX = (this.container_.offsetLeft+contentWidth+10) - mapNE.x;
}
if(panX!=0 || panY!=0) {this.map_.panBy(new GSize(-panX-10,panY+30)); }

Then, if necessary, you can pan the map, just as Google does, to show the open window. If you
check out the online example at http://googlemapsbook.com/chapter9/CustomInfoWindow/ ,
you can see the pan in action by moving the marker to the top or right edge and then clicking it to
open the LittleInfoWindow .

Using the LittleInfoWindow

The last and final addition for your LittleInfoWindow should be the creation of the appropriate
methods on the GMarkerclass, in the same way you created methods for the ToolTip earlier. Again,
by adding open and close methods to the GMarkerclass:

GMarker.prototype.LittleInfoWindowInstance = null;
GMarker.prototype.openLittleInfoWindow = function(content,width) {

if(this.LittleInfoWindowInstance == null) {
this.LittleInfoWindowInstance = new LittleInfoWindow(this,content,width)
map.addOverlay(this.LittleInfoWindowInstance);

}
}
GMarker.prototype.closeLittleInfoWindow = function() {

if(this.LittleInfoWindowInstance != null) {
map.removeOverlay(this.LittleInfoWindowInstance);
this.LittleInfoWindowInstance = null;

}
}

you can access your custom info window with an API similar to the Google info window using
something like this:

GEvent.addListener(marker,'click',function() {
if(marker.LittleInfoWindowInstance) {

CHAPTER 9� ADVANCED TIPS AND TRICKS236

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 236

marker.closeLittleInfoWindow();
} else {

marker.openLittleInfoWindow('Hello World! �

This is my info window!');

}
});

The difference from GoogleÕs info window is that the LittleInfoWindowInstance is attached
to the GMarker, not the map, so you have the added advantage of opening more than one window
at the same time. If you want to force only one window open at a time, youÕll need to track the
instance using the map object, rather than the marker.

Implementing Your Own Map Type, Tiles, and
Projection
By default, three types of maps are built into the Google Maps API:

¥ Map (often referred to as Normal), which shows the earth using outlines and colored
objects, similar to a printed map you might purchase for driving directions

¥ Satellite, which shows the map using satellite photos of the earth taken from space

¥ Hybrid , which is a mixture of the satellite images overlaid with information from the
normal map type

Each map is an instance of the GMapTypeclass, and each has its own constant G_NORMAL_MAP,
G_SATELLITE_MAP, and G_HYBRID_MAP, respectively. To quickly refer to all three, there is also the
G_DEFAULT_MAP_TYPESconstant, which is an array of the previous three constants combined.

In the example in this section, youÕll create your own map using a new projection and the
NASA Visible Earth images (http://visibleearth.nasa.gov). But first, you need to understand
how the map type, projection, and tiles work together.

GMapType: Gluing It Together
Understanding the GMapTypeis key to understanding how the different classes interact to create
a single map. Each instance of the GMapTypeclass defines the draggable map you see on the screen.
The map type tells the API what the upper and lower zoom levels are, which GTileLayer objects
to include in the map, and which GProjection to use for latitude and longitude calculations.
A typical GMapTypeobject would look similar to this:

var MyMapType = new GMapType(
[MyTileLayer1, MyTileLayer2],
MyProjection,
'My Map Type',{

shortName:'Mine',
tileSize:256,
maxResolution:5,
minResolution:0

});

CHAPTER 9� ADVANCED TIPS AND TRICKS237

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 237

MyTileLayer1 and MyTileLayer2 would be instances of the GTileLayer class, and MyProjection
would be an instance of the GProjection class. The third parameter for GMapTypeis the label to
show on the map type button in the upper-right corner of the Google map. YouÕll also notice the
fourth parameter is a JavaScript object implementing the properties of the GMapTypeOptions
class, listed in Table 9-2. In this case, the short name is Mine, the tile size is 256×256 pixels, and
the zoom levels are restricted to 0 through 5.

� CautionIn your map type, all the tiles in each of the GTileLayer objects must be of equal size. You canÕt
mix and match tile sizes within the same map type.

Table 9-2.GMapTypeOptions Properties

Property Description

shortName The short name is returned from GMapType.getName(true)and is used in
the GOverviewMapControl. The default is the same as the name supplied in the
GMapTypearguments.

urlArg Optional parameters for the URL of the map type; can be retrieved using
GMapType.getUrlArg().

maxResolution The maximum zoom level of this map type.

minResolution The minimum zoom level of this map type.

tileSize The tile size. The default is 256.

textColor The text color returned by GMapType.getTextColor(). The default is black .

linkColor Text link color returned by GMapType.getLinkColor(). The default is #7777cc.

errorMessage An optional message returned by GMapType.getErrorMessage().

The GMapTypeobject directs tasks to various other classes in the API. For instance, when you
need to know where a longitude or latitude point falls on the map, the map type asks the
GProjection where the point should go. When you drag the map around, the GTileLayer receives
requests from the map type to get more images for the new map tiles.

In the case where you donÕt really need a brand-new map type, and just want to add a tile layer
to an existing map (as with the custom tile method described in Chapter 7), you can simply r euse
GoogleÕs existing projection and tiles, layering your own on top. Using GoogleÕs projection and tiles
is easy. Creating your own GProjection and GTileLayer is where things get a bit tricky.

GProjection: Locating Where Things Are
The GProjection interface handles the math required to convert latitude and longitude into
relative screen pixels and back again. It tells the map where GLatLng(-80,43) really is, and it tells
your web application what latitude and longitude is at position GPoint(64,34) . Besides that, itÕs
also responsible for the biggest untruth in the map.

You may not realize it, but when you look at a mapÑany mapÑitÕs stretching the truth. A map
printed on a piece of paper or displayed on a screen is a two-dimensional representation of
a three-dimensional object. People have long understood the earth is round, but a round object
canÕt be represented accurately in a flat image without losing or skewing some of the informa tion.

CHAPTER 9� ADVANCED TIPS AND TRICKS238

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 238

To create the flat map, the round earth is projected onto the flat surface using some mathem atical
or statistical process, but as we said, projections do sometimes stretch the truth.

For example, take a look at Figure 9-15, where weÕve outlined the United States and Greenland.
Greenland, on a round globe, covers about 836,000 square miles (2,166,000 square kilometers),
and the United States covers about 3,539,000 square miles (9,166,000 square kilometers). That
means Greenland is really about 20% the area of the United States, but on the Google map (and
many other maps), it looks as though you could fit two of the United States inside Greenland! It
also looks as though Alaska is about half the area of the United States. This is because the Google
API uses the Mercator projection.

Figure 9-15.Comparing the United States and Greenland on a Mercator projection

Understanding Projection Types

Without going deep into mathematical theories and discussions, map projections can generally
be divided into three categoriesÑplanar, conic, and cylindricalÑbut some projections, such as
the Mollweide homolographic and the sinusoidal projection, are hybrids. Each category has dozens
of different variations depending on the desired use and accuracy.

CHAPTER 9� ADVANCED TIPS AND TRICKS239

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 239

Planar : A planer map projection, often referred to as an Azimuthal projection, is created by
placing a flat plane tangent to the globe at one point and projecting the surface onto the plane
from a single point source within the globe, as represented in Figure 9-16. Imagine an image
on a wall, created by placing a light inside a glass globe. The resulting circular image would
be a planar map representing the round glass globe. The positions of the latitude and
longitude lines will vary depending on the position of the plane relative to the globe,
and planar projections also vary depending on where the common point is within the
globe. These projections are often used for maps of the polar regions.

Figure 9-16.Creating a planar projection

Conic: Unlike the planer projection, the conic projection uses a cone, placed on the globe
like an ice cream cone, tangent to some parallel, as shown in Figure 9-17. Then like the planar
projection, the globe is projected into the cone using the center of the globe as the common
point. The cone can then be cut along one of the meridians and placed flat. Latitude lines
are represented by straight lines converging at the center; longitude lines are represented by
arcs with the apex of the cone at their center. Conic projections vary depending on the
position of the cone and the size of the cone.

Figure 9-17.Creating a conic projection

Cylindrical : Cylindrical projections are similar to both the other two types of projections;
however, the plane is wrapped around the globe like a cylinder, tangent to the equator, as
illustrated in Figure 9-18. The globe is then projected on to the cylinder from a central point
within the globe, or along a central line running from pole to pole. The resulting map has
equidistant parallel longitude lines and parallel latitude lines that increase in distance as
you move farther from the equator. The difficulty with cylindrical projections is that the poles
of the earth canÕt be represented accurately.

CHAPTER 9� ADVANCED TIPS AND TRICKS240

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 240

Figure 9-18.Creating a cylindrical projection

The Mercator projection used by the Google Maps API is a cylindrical projection; however,
the latitude lines are mathematically adjusted using one of the following equations where �
represents the longitude and � represents the latitude:

The equations preserve more realistic shapes, as shown in Figure 9-19.

Figure 9-19.Latitude and longitude lines of the Google Maps APIÕs Mercator projection

x

y

= Š

= +
�

��
�

��
	

�

�

�

=
+

� �

� �

�

0

1

4

1

2

1

2

1

ln tan

ln
sin

11

1

1

Š

�

��
�

��

=

=

=

Š

Š

sin

sinh (tan)

tanh (sin)

ln(

�

�

�

ttan sec)� �+

CHAPTER 9� ADVANCED TIPS AND TRICKS241

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 241

The downside with Mercator projections, as you saw in Figure 9-15, is that areas farther away
from the equator are greatly exaggerated and the poles themselves canÕt be shown.

Using a Different Projection

By default, all of the maps in the API use the built-in GMercatorProjection class. The
GMercatorProjection is an implementation of the GProjection interface using the Mercator
projection. If your custom map image is using the Mercator projection, you donÕt have to
worry about implementing your own GProjection interface, and you can just reference the
GMercatorProjection class. If you would like to use a projection other than the Mercator
projection, you need to create a new class for your projection and implement the methods
listed in Table 9-3.

Table 9-3.Methods Required to Implement a GProjection Class

Method Return Value Description

fromLatLngToPixel GPoint Given the latitude, longitude from the GLatLng
(latlng,zoom) object, and zoom level,returns the X and Y pixel

coordinates of the location relative to the bounding
div of the map.

fromPixelToLatLng GLatLng Reverse of fromLatLngToPixel . Given the pixel
(pixel,zoom,unbounded) coordinates and zoom, returns the geographical

latitude and longitude on the location. If the
unbounded flag is true, the geographical longitude
should not wrap when beyond -180 or 180 degrees.

tileCheckRange Boolean Returns true if the tile index is within a valid range
(tile,zoom,tilesize) for the known map type. If false is returned, the map

will display an empty tile. In the case where you
want the map to wrap horizontally, you may need
to modify the tile index to point to the index of an
existing tile.

getWrapWidth(zoom) Integer Given the zoom level, returns the pixel width of the
entire map at the given zoom. The API uses this value
to indicate when the map should repeat itself. By
default, getWrapWidth() returns Infinity , and the
map does not wrap.

Listing 9-6 shows a generic implementation of an equidistant cylindr ical projection, which
youÕll use in the ÒThe Blue Marble Map: Putting it All TogetherÓ section later in the chapter to
create a map using the NASA Visible Earth images as tiles. The equidistant cylindrical projec tion
is created by plotting the latitude and longitude values from the globe in a 1:1 ratio on a plane,
as shown in Figure 9-20. This creates a map whose width, unlike GoogleÕs Mercator projection,
is always twice its height while latitude and longitude lines are all at equal distances. If you
compare y our final map with the Google map, your equidistant cylindrical map will actually
be half the height and thus half the number of overall tiles per zoom level.

CHAPTER 9� ADVANCED TIPS AND TRICKS242

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 242

Figure 9-20.Equidistant cylindrical projection

YouÕll also notice the projection in Listing 9-6 has an additional property,
Equidistant CylindricalProjection.mapResolutions , to hold the overall width of the map at
each zoom level.

� CautionYour implementation of the GProjection interface is dependent on the resolution of the map image
you plan to use. If you want to reuse the GMercatorProjection , your map images must match the sizes
discussed in the next section.

Listing 9-6. Equidistant Cylindrical GProjection

EquidistantCylindricalProjection = new GProjection();

EquidistantCylindricalProjection.mapResolutions = [256,512,1024]

EquidistantCylindricalProjection.fromLatLngToPixel = function(latlng,zoom) {
var lng = parseInt(Math.floor((this.mapResolutions[zoom] / 360) * �

(latlng.lng() + 180)));
var lat = parseInt(Math.floor(Math.abs((this.mapResolutions[zoom] / 2 / 180) * �

(latlng.lat()-90))));
var point = new GPoint(lng,lat);
return point;

}

EquidistantCylindricalProjection.fromPixelToLatLng = �
function(pixel,zoom,unbounded) {

var lat = 90-(pixel.y / (this.mapResolutions[zoom] / 2 / 180));
var lng = (pixel.x / (this.mapResolutions[zoom] / 360)) - 180;

CHAPTER 9� ADVANCED TIPS AND TRICKS243

7079ch09FINAL.qxd 7/25/06 1:48 PM Page 243

this print for content only—size & color not accurate spine = 0.8927" 384 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Michael Purvis

US $34.99

Shelve in
Web development

User level:
Beginner–Intermediate

Purvis,
Sam

bells,
Turner

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Michael Purvis, Jeffrey Sambells,
and Cameron Turner
Foreword by Mike Pegg,
Founder of the Google Maps Mania Blog

Beginning

Google Maps
Applications
with PHP and Ajax
From Novice to Professional

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-707-9

9 781590 597071

53499

6 89253 59707 1

Companion
eBook Available

Build awesome web-based mapping applications with this powerful API!

Covers
API Version 2, including

Google’s geocoder!

Covers
API Version 2, including

Google’s geocoder!

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

forums.apress.com
FOR PROFESSIONALS
BY PROFESSIONALS™

Join online discussions:

THE APRESS ROADMAP

Beginning JavaScript
with DOM and Ajax

Beginning CSS
Web Development

Pro CSS Techniques

Beginning Google Maps Application
Development with PHP and Ajax

Beginning PHP and MySQL 5,
Second Edition

Jeffrey Sambells, ZCE

Cameron Turner

Beginning Google Maps Applications with PHP and Ajax:
From Novice to Professional

Dear Reader,

Until recently, building interactive web-based mapping applications has been a
cumbersome affair. That changed when Google released its powerful Maps API.
We’ve written this book to help you take advantage of this technology in your
own endeavors—whether you’re an enthusiast playing for fun or a professional
building for profit.

We get rolling with examples that require hardly any code at all, but you’ll
quickly become acquainted with many facets of the Maps API. We demonstrate
powerful methods for simultaneously plotting large data sets, creating your
own map overlays, and harvesting and geocoding sets of addresses. You’ll see
how to set up alternative tile sets and where to access imagery to use for them.
We even show you how to build your own geocoder from scratch, for those
high-volume batch jobs.

We’ve had a blast researching and writing this book, and we really think it
has turned into a great, comprehensive resource. As well as providing hands-on
examples of real mapping projects, this book supplies a complete reference for
the API, along with the relevant aspects of JavaScript, CSS, PHP, and SQL.

If you enjoy this book or you’ve built something cool related to Google
Maps, we encourage you to drop by http://googlemapsbook.com and let us
know. We’re keeping a blog there that’s an ongoing stream of new pointers,
ideas, and resources to help out fellow mappers.

Now, go forth and map the world!

Mike Purvis, Jeffrey Sambells, and Cameron Turner

BeginningGoogle M
aps Applications

w
ithPHP

andAjax

